Работая над своими сложными математическими теориями, Бойяи и Лобачевский вывели тригонометрические выражения для гиперболической геометрии. Удивительным является тот факт, что, как и все остальное, они сделали это независимо друг от друга. Это свидетельствует об их гениальности, но также показывает, что результаты, которые они получили, действительно являются правильными.
Соотношения, выведенные Бойяи и Лобачевским, в малых областях могут быть сведены к формулам классической тригонометрии, но в других случаях они характеризуют новые, совершенно неисследованные миры.
Для переменной
Аналогично элементарной тригонометрии, гиперболический тангенс определяется следующей формулой:
th
Здесь мы вкратце напомним так называемую теорему синусов.
В треугольнике со сторонами
справедливо следующее соотношение:
Аналогичное соотношение можно сформулировать в гиперболической тригонометрии:
sin
Чтобы проверить гиперболические равенства, нужно подставить вместо гиперболических функций их определения:
и затем, выполнив соответствующие расчеты, убедиться, что получится один и тот же ответ.
Используя определения гиперболических синуса и косинуса, можно вывести и другие тригонометрические тождества, аналогичные известным тождествам из евклидовой геометрии. Например, мы можем проверить, что
ch(x + у) = chx·chy + shx·shy
аналогично традиционному выражению
cos(x + у) = cosx·cosy + sinx·siny
* * *
ОСНОВНОЕ ТОЖДЕСТВО ГИПЕРБОЛИЧЕСКОЙ ТРИГОНОМЕТРИИ
В евклидовой тригонометрии есть важное соотношение, называемое основным тригонометрическим тождеством, которое утверждает, что sin
ВОПРОС ТЕРМИНОЛОГИИ
В евклидовой терминологии синус и косинус называются круговыми функциями, поскольку они получаются из свойств круга. Рассмотрим окружность радиуса 1 с центром в начале системы координат. Уравнение этой окружности записывается как х2 + у2 = 1. В этом простом уравнении мы можем сделать замену переменной, выразив переменные
Если вместо круга мы возьмем гиперболу, график функции х2 — у2 = 1, то
Эти графики нам уже знакомы. Гипербола напоминает нам псевдосферу.
* * *
Что касается тангенсов, то можно показать, что
аналогично традиционному выражению
* * *
ЕВКЛИДОВА ТРИГОНОМЕТРИЯ
Тригонометрические тождества для суммы и разности выглядят следующим образом:
sin(x + у) = sinx·cosy + cosx·siny
cos(x + у) = cosx·cosy — sinx·siny
sin(x — y) = sinx·cosy — cosx·siny
cos(x — y) = cosx·cosy + sinx·siny
* * *
РЕШЕНИЕ ГИПЕРБОЛИЧЕСКОГО ТРЕУГОЛЬНИКА ПО ЕГО УГЛАМ
Пусть в гиперболическом треугольнике даны внутренние углы
Угловой дефект считается по формуле 180° — (8° + 22° + 40°) = 110°. Для вычисления длин сторон мы воспользуемся гиперболической теоремой косинусов и получим