Это позволяет нам вычислить значение
что дает нам длину
К счастью, современные калькуляторы имеют эти функции, и расчеты можно делать без утомительных промежуточных вычислений.
* * *
Аналогично можно проверить другие соотношения с помощью определений гиперболических синуса и косинуса.
По таблице традиционных тригонометрических тождеств можно составить аналогичные соотношения гиперболической геометрии. Просто надо от функций sin
Это простое правило позволяет получить соотношения для гиперболической тригонометрии из их евклидовых аналогов:
sh(x + у) = shx·chy + chx·shy
sh(x — у) = shx·chy — chx·shy
ch(x + y) = chx·chy + shx·shy
ch(x — y) = chx·chy — shx·shy
Как мы видели, гиперболическая тригонометрия похожа на традиционную, изучаемую в школе: обе имеют аналогичные соотношения. Приведенные ниже выражения содержат функции из обеих тригонометрий.
Рассмотрим треугольник с углами
Для него справедливы следующие соотношения:
1) гиперболическая теорема косинусов для углов:
cos
2) гиперболическая теорема косинусов для сторон:
ch
3) cos
4) /2 = .
Приведенные выше выражения также справедливы, если мы заменим
Глава 6
Эллиптическая геометрия
Имя немецкого математика Бернхарда Римана вписано большими буквами в историю математики. Эллиптическая геометрия — это удивительное детище его математического гения. Именно он представил прямые линии на таких поверхностях, как шар или мяч для регби, в виде окружностей.
Поверхность эллипсоида наиболее часто используется для визуализации и интерпретации эллиптической геометрии, отсюда и термин «эллиптическая геометрия».
Чтобы наиболее ясно продемонстрировать свойства этой геометрии, мы рассмотрим поверхность сферы, которая представляет собой самый простой, частный случай эллипсоида.
С помощью эллипсоида можно представить эту геометрию в очень интересной форме. Рассмотрим сначала более подробно поверхность эллипсоида.
* * *
ЭЛЛИПС
Эллипсом называется такая кривая, сумма расстояний от любой точки которой до двух фиксированных точек (так называемых фокусов) является постоянной
Круг является частным случаем эллипса, когда оба фокуса находятся в одной точке.
* * *
Эллипсоид получается путем вращения эллипса вокруг одной из его осей симметрии. Эллипсоид напоминает апельсин или лимон, а также планету Земля. Земля на самом деле является не сферой, а эллипсоидом, так как она приплюснута на полюсах. Однако для простоты мы будем считать земной шар идеальной сферой.
Для того чтобы понять следующий пример, нам придется включить воображение и вспомнить про Гулливера, путешествующего по стране лилипутов. Представим себе, что эти существа живут на поверхности эллипсоида, и им нужно сделать несколько измерений с помощью транспортира.
На поверхности эллипсоида нарисован треугольник, вершинами которого являются точки