Из-за отсутствия доказательств современные египтологи, отстаивающие гипотезу о принципе секед, исходят из допущения, что знания, которыми обладали египтяне времен XII династии, были доступны и для египтян эпохи IV династии. Они игнорируют как несущественный резкий упадок культурных и интеллектуальных элементов, которым сопровождался крах Древнего царства и постепенное формирование Среднего царства, происходившее в атмосфере политической анархии и социального хаоса. Сравните постройки эпохи Среднего царства с сооружениями Древнего царства, и вы сразу же заметите очевидный упадок эстетических принципов и строительных приемов. Тот же самый взлет и упадок, по всей видимости, был характерен и для интеллектуальной жизни египтян.
Давайте вспомним, что происходило в Европе в эпоху поздней античности и Средневековья. Хотя художественные создания и интеллектуальные достижения Древней Греции и Рима сегодня являются основополагающей базой европейской цивилизации, Европа полностью утратила живой контакт с наследием греческих и римских классиков в период так называемых темных веков, последовавших за гибелью и распадом Римской империи в V в. н.э. И если бы не последовавшее в эпоху Крестовых походов установление связей с арабскими интеллектуалами, которые продолжали изучать греческих авторов, и не возвращение из забвения классических латинских текстов, хранившихся в монастырях Ирландии, где их переписывали на протяжении многих веков, современные европейцы вполне могли бы и не знать, кто такие Цицерон или Аристотель.
Не исключено, что нечто подобное произошло и в Древнем Египте. Египтяне эпохи Среднего царства вполне могли утратить знание числа π, которым обладали их предки эпохи Древнего царства, и создать в качестве его замены принцип секед.
Гипотеза о правиле секед невольно побуждает нас выказать интригующее предположение: число я было не единственной математической константой, известной египтянам эпохи Древнего царства.
Эту константу с эпохи Возрождения принято называть принципом золотого сечения, или ф (фи), ф - это не число, которое можно вычислить арифметическим путем, а параметр, определяемый с помощью компаса и линейки. Во-первых, проведем линию, условно называемую АС. Затем разделим АС в точке В таким образом, что АС/ВС = АВ/ВС. Другими словами, отношение всей длины этой линии к большему ее отрезку точно такое же, как и отношение большего отрезка к меньшему. Оба отношения выражаются величиной ф, которая составляет 1,618033988749895... Эту иррациональную и бесконечную величину называют по-разному: золотое сечение, золотая середина, первичное сечение, Божественная пропорция. Ф можно наглядно показать с помощью геометрии квадрата. Возьмем квадрат, сторона которого равна 1, и разделим его пополам от одной противолежащей стороны до другой. У нас получатся два прямоугольника 1 х ( 1/2). Диагональ одного из этих прямоугольников плюс 1/2 и будет равна ф. Давайте обозначим эту диагональ как Wu применим в отношении ее теорему Пифагора. Теперь мы знаем отношение W к двум другим сторонам: W2 = 12 + (1 /2)2. Эту формулу можно записать и как W2 = 1,25; таким образом, W = √1.25 и ф = √1.25 + (1 /2). Однако √1.25 можно умножить на 1 в форме √4/2, чтобы получить √4x1.25 / 2 = √5 / 2. Теперь подставим √5/2 вместо √1.25 в уравнение ф = √1.25+ 1/2,и получим ф = (1 + √5) / 2.
Одна из самых удивительных особенностей ф заключается в том, что 1 + ф = ф2. Выполните простые алгебраические действия с этим уравнением, и вы получите (1/ф) + 1 = ф, уравнение, которое ведет к получению дополнительного ряда чисел, известного как последовательность Фибоначчи. Своим названием эта последовательность обязана имени одного из крупнейших математических гениев эпохи Средневековья - Леонардо Фибоначчи (ок 1170—1240), итальянского ученого, известного также под именем Леонардо Пизанский. Именно Фибоначчи познакомил европейцев с индийско-арабскими цифрами, которыми мы пользуемся сегодня. Он совершил длительное путешествие в Египет и внимательно изучал математические принципы и методы, встречавшиеся ему в дальних краях. Вполне возможно, что именно в Египте Фибоначчи нашел ту самую последовательность, которая сегодня носит его имя, и обнаружил ее взаимосвязь с числами пиф.
Последовательность Фибоначчи выглядит достаточно просто: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55... Каждое из этих чисел после первой 1 представляет собой сумму двух предыдущих. Весьма интригующим здесь представляется тот факт, что отношение каждого последующего числа к предыдущему является приближенным значением ф. По мере продвижения по этой последовательности степень приближения становится все более и более точной. Так, отношение 1 к 1 равно 1, 3 к 2 - 1,5, 5кЗ - 1,666, и к тому моменту, когда вы достигнете отношения 55 к 34, вы получите величину 1,61747, что очень близко к точному значению ф = 1,6180339.