Читаем Многоликий солитон полностью

Соотношение между эффектами дисперсии и нелинейности можно выразить с помощью простой формулы. Прежде чем написать ее, посмотрим на точное решение КдФ-уравнения, описывающее солитон,



Здесь v = v0 [1 + (y0/2h)], а величина l определяется из соотношения



Это условие и выражает равновесие между эффектами нелинейности и дисперсии в солитоне. Хотя параметр S был известен уже Стоксу, его значение для теории солитонов было выяснено лишь в наше время.

Происхождение условия (7.2) можно понять, если вспомнить, что нелинейность увеличивает скорость движения вершины горбика на величину порядка v0y0/h, а дисперсия замедляет ее движение на величину порядка v0h2/l2 (напомним, что положение вершины горбика определяется основной гармоникой, длина волны которой примерно равна 4l). Эффекты нелинейности и дисперсии компенсируются, если эти добавки к скорости примерно равны, что и приводит к условию (7.2).

Если величина параметра S заметно больше единицы, то для достаточно плавного горбика высотой y

0 и шириной 2l основную роль будут играть эффекты нелинейности. Он будет деформироваться и скорее всего распадется на несколько солитонов. Если S 1, то преобладает дисперсия, и горбик постепенно «расплывается». При S  1 горбик по форме близок к солитону. Если его скорость близка к скорости солитона, то он слегка деформируется и через некоторое время превратится в настоящий солитон, форма которого определяется формулой (7.1).

Для читателя, не вполне освоившегося с гиперболическими функциями, напомним, что ch х принимает наименьшее значение при х = 0, ch (0) = 1. При возрастании  функция ch х монотонно возрастает, так что ch2 (1) 2,4. Таким образом, вершина солитона расположена в точке х = vt, а величину 2l можно считать его «шириной», на которой в основном сосредоточена переносимая им энергия. Часть солитона, расположенную на большом расстоянии от центра, иногда называют «хвостом» солитона. Центральную часть естественно называть «головой». В «голове» сосредоточено почти 90 % жидкости, поднятой солитоном над поверхностью.

В ч. I мы привели выражение для скорости солитона Рассела , на первый взгляд не совпадающее с полученным для точного решения КдФ-уравнения. На самом деле величина скорости солитона v =

[1 + (y0/2h)] не противоречит формуле Рассела. Нужно вспомнить только о сделанном предположении, что амплитуда y0 мала. Поэтому y0/h малая величина и



Вернемся теперь к численному эксперименту Забуски и Крускала с КдФ-уравнением. Приступая к нему, они уже были хорошо знакомы с солитонными решения (7.1) и с нелинейными периодическими волнами. Однако они довольно плохо представляли, как могут образовываться солитоны, и совершенно не знали, что произойдет, если солитоны столкнутся. Считалось, что солитоны либо распадутся при таком соударении, либо, в крайнем случае, могут образовать новый солитон, испустив некоторое количество нелинейных волн. Они поставили задачу примерно так же, как и Ферми, Паста и Улам. Задавали некоторое простое начальное возмущение поверхности воды у (0, х) и наблюдали, что с ним происходило с течением времени (на самом деле они изучали волны не в воде, а в плазме, но это совершенно несущественно, коль скоро использовалось одно и то же уравнение КдФ). Для того чтобы ЭВМ могла справиться с задачей, нужно, конечно, изучать этот процесс не на всей бесконечной оси Ох, а на некотором конечном участке О  х

  L. Чтобы не думать о том, что происходит на границе, проще всего замкнуть этот отрезок, т. е. решать задачу на окружности.

Проследим за эволюцией простой гармонической волны у (0, х) = cos (2πх/L), рассчитанной ЭВМ. Начальная форма поверхности изображена на рис. 7.6 штрихпунктирой линией.



Через некоторое время Т эффекты нелинейности приводят к тому, что образуется характерная ступенька (штриховая линия). Спустя время 2,5 Т эта ступенька порождает последовательность солитонов (сплошная линия), которые перенумерованы в порядке убывания их амплитуд. Все они движутся направо, причем солитон, пересекающий правую границу, тут же появляется слева: вспомним, что они движутся по окружности, и точки х = 0, х = L соответствуют одной и той же точке этой окружности (как «концы» экватора на карте земного шара). Первый солитон движется быстрее всех остальных. Он догоняет их и последовательно сталкивается с ними. Примерный график движения его вершины изображен на рис. 7.7. Ступеньки соответствуют столкновениям с другими солитонами. Видно, что после столкновения он сохраняет скорость, но как бы ускоряется в самый момент столкновения. Это явление было объяснено в гл. 2 по аналогии со столкновениями упругих мячей.

Все эти результаты, полученные ЭВМ, удивили не только авторов работы, но и всех, кто с ними познакомился. Особенно большое впечатление произвел сделанный ЭВМ кинофильм, в котором можно было увидеть, как рождаются солитоны, как они сталкиваются друг с другом и что при этом с ними происходит.



Перейти на страницу:

Все книги серии Библиотечка Квант

Похожие книги