Рассмотрим с этой точки зрения аналогию Кирхгофа. Выше упоминалось о точном соответствии между движением маятника и формой изгиба упругой проволочки (эластика Эйлера). В следующей главе будет показано, что для определения эластики Эйлера нужно решить уравнение маятника φ" = -ω02 sin φ. Однако в этом случае задача ставится совсем не так, как в теории маятника. Аналог времени здесь — длина дуги эластики
Полезны не только точные, но и приближенные аналогии. Типичный пример приближенной аналогии — соотношение между обычным и циклоидальным маятником. Приближенной аналогией следует пользоваться с большей осторожностью, чем точной. Например, при достаточно больших амплитудах колебания обычного и циклоидального маятника становятся качественно различными. Более удачна качественная аналогия между маятником и грузиком на кривой
*) Топологически эквивалентные фазовые портреты легко получить, нарисовав какой-нибудь фазовый портрет на резиновой пленке. Любой портрет, который получается растягиванием пленки без разрывов, топологически эквивалентен исходному. При этом замкнутые кривые остаются замкнутыми, непересекающиеся кривые остаются непересекающимися и т. д.
Топологическую эквивалентность фазовых портретов можно было бы положить в основу определения
Как говорил Я. И. Френкель, «физик-теоретик... подобен художнику-карикатуристу, который должен воспроизвести оригинал не во всех деталях, подобно фотографическому аппарату, но упростить и схематизировать его таким образом, чтобы выявить и подчеркнуть наиболее характерные черты. Фотографической точности можно — и следует — требовать лишь от теоретического описания простейших систем. Хорошая теория сложных систем должна представлять лишь хорошую «карикатуру» на эти системы, утрирующую те свойства их, которые являются наиболее типическими, и умышленно игнорирующую все остальные — несущественные свойства... Хорошая карикатура на какого-либо человека не может существенно улучшиться от более аккуратного и точного изображения нехарактерных деталей его лица и фигуры» *). Так вот, основная тонкость состоит как раз в том, чтобы выделить эти наиболее характерные черты.
*) Чтобы вполне оценить это высказывание, надо знать, что Я. И. Френкель с детства и до конца жизни помимо физики увлекался живописью. Выполненные им портреты друзей и знакомых обычно передают наиболее существенные черты оригинала, хотя и не являются карикатурами. Может быть, лучше вспомнить не о карикатурах, а о рисунках Пушкина или Пикассо, которые несколькими штрихами удивительно точно передают внутреннюю сущность изображаемого человека.