Читаем Многоликий солитон полностью

В резиновой трубке или ленте, закрепленных на концах, легко возбуждать стоячие волны. Особенно легко возбуждается колебание, в котором нетрудно узнать «полусинусоиду». При этом все точки колеблются в одинаковой фазе, и амплитуда колебаний максимальна в середине («пучность» стоячей волны). Длина такой стоячей волны равна удвоенной длине ленты *). Труднее возбудить колебание, в котором остается в покое середина («узел» стоячей волны). На всей ленте при этом укладывается «период синусоиды», и длина волны равна длине ленты. Чтобы возбудить такое колебание, нужно оттянуть ленты в противоположные стороны на равных расстояниях от краев, удерживая середину в покое. Легче наблюдать такую волну на приборчике со скрепками. Возбудив какие-либо колебания в этой цепочке (лучше всего это делать быстрым, легким щелчком по скрепке), можно просто остановить среднюю скрепку. При этом «выживет» колебание, в котором средняя скрепка покоится.

*) Ниже мы увидим, что синусоидальную стоячую волну можно представить в виде суммы двух одинаковых волн, бегущих в противоположных направлениях. Длина стоячей волны, по определению, совпадает с длиной этих бегущих волн.

Стоячие волны разных типов, в которых на всей длине ленты укладывается разное число N полуволн, называются нормальными модами колебаний (или просто модами; это слово происходит от латинского modus, т. е. образ, способ). Моды с малыми значениями N называются низшими, а с большими — высшими. Моду с N = 1 естественно называть основной, она возбуждается легче всего. При произвольном начальном возбуждении нашей системы возбуждаются разные моды, однако высшие моды не только труднее возбуждаются, но и быстрее затухают из-за трения. Потому-то их и труднее наблюдать.

Понять, что такое моды и как они себя ведут, проще всего на модели одномерной цепочки конечной длины с закрепленными концами. Сначала посмотрим, как колеблется простейшая цепочка из двух атомов. Пусть их равновесные положения равны x01 = α и x02 = 2α, а крайние пружинки закреплены в точках x00 = 0 и x03 = 3α (см. рис. 5.1). Легко составить уравнения движения атомов.

Прежде чем это сделать, введем одно небольшое новшество в обозначениях. До сих пор нам приходилось иметь дело лишь с производными по времени, и мы их обозначали штрихом. При изучении колебаний в распределенных системах встречаются не только производные по времени, с помощью которых записываются скорости и ускорения отдельных частичек, но и производные по координате. Они характеризуют изменение отклонения при переходе от одной частицы к другой в один и тот же момент времени. Поэтому условимся обозначать производную по времени не штрихом, а точкой, а штрих сохраним для производной по координате. Теперь мы будем обозначать скорость n-гo грузика как , а его ускорение — как .

Уравнения движения грузиков можно тогда написать в виде

Действительно, сила, с которой левая пружина тянет первый грузик, равна произведению модуля упругости k на удлинение пружины y1, и при y1  0 эта сила направлена в отрицательном направлении оси х. Так получается член ky1 *). Удлинение правой пружины равно (y2 - y1), и она тянет грузик с силой k(y2 - y1). Это дает второй член в правой части первого уравнения. Точно так же находим силу, действующую на второй грузик.

*) Предполагается, что упругие свойства пружины соответствуют закону Гука. Нелинейность зависимости силы отклонения вводится с помощью других, дополнительных источников силы.

На первый взгляд может показаться, что решить эти уравнения очень сложно. Однако они линейны, а это значит, что достаточно найти лишь некоторый запас решений. Их линейные комбинации, возможно, и дадут самое общее решение.

Для начала попробуем получить хоть какие-нибудь решения. В этом нам поможет физическая интуиция. Действительно, вслед за Ньютоном мы представляем себе простейшую бегущую волну как процесс распространения гармонического колебания от одной частицы к другой. Тогда стоячая волна — это просто установившиеся колебания всех частичек с разными амплитудами. Сделаем простейшее предположение: допустим, что все частицы колеблются гармонически и притом с одинаковой частотой ω, и посмотрим, что отсюда следует.

Для гармонических колебаний ускорение пропорционально отклонению, т. е. = -ω2y1 и   = -ω2y2. Подставляя это в уравнения (5.1), получаем простую линейную систему уравнений для y1 и y2:

Здесь ω02 = k/m, а ω — не определенная пока частота наших гипотетических колебаний.

Перейти на страницу:

Все книги серии Библиотечка Квант

Похожие книги