*) Слово «дисперсия» означает в переводе с латинского рассеяние, разброс. В оптике дисперсией обычно называют явление зависимости показателя преломления от частоты или длины волны. В общей теории волн дисперсию связывают с зависимостью скорости волны от ее длины, а соотношение между частотой и длиной волны называют дисперсионной формулой. Дисперсия очень важна в теории солитонов, и мы изучим ее подробно.
Волны Д'Аламбера и споры вокруг них
Воображение принимает в творчестве геометра не ме-
нее участия, чем в минуты вдохновения у поэта.
Д'Аламбер После исследований Бернулли по одномерным цепочкам Эйлер начал изучать колебания и струны, не пытаясь представить ее с помощью простой модели, а считая ее сплошной средой. При этом движение струны определено, если известно ее отклонение от положения равновесия у (t, х) как функция координаты х и времени. В уравнение, описывающее движение струны, входят, как мы увидим, не только производные по времени , но и производные по координате у". Такие уравнения называются уравнениями с частными производными. Их систематическое изучение, которое продолжается и в наши дни, было начато Эйлером. Движения струны описываются очень простым уравнением, с которым мы познакомимся чуть позже. Опираясь на исследования Эйлера, знаменитый французский математик и энциклопедист *) Жан ле Рон Д'Аламбер (1717—1783) нашел в 1748 г. его решение
у (t, х) = f (х - vt) + g (х + vt) , (5. 10)
в котором f и g могут быть произвольными функциями.
*) Вместе с Дени Дидро он возглавил работу над монументальной «Энциклопедией наук, искусств и ремесел», 33 тома которой вышли в свет с 1751 по 1777 гг. Это была первая в мире энциклопедия в современном смысле слова.
Это замечательное решение, которое называется решением Д'Аламбера (или волной Д'Аламбера), описывает все возможные движения струны при соответствующем выборе функций f и g **). Например, если g = 0, то решение Д'Аламбера дает волну, бегущую по оси х направо со скоростью v. Скорость v не произвольна, а определенным образом зависит от упругости и силы натяжения струны (характер этой зависимости сейчас нам не важен).
**) Так как решение Д'Аламбера описывает любые волны, которые могут распространяться по струне, то, зная это решение, можно вообще забыть об уравнении. Точно так же для описания всех возможных движений точечной частицы, на которую не действуют внешние силы, достаточно знать галилеев закон движения x = x0 + vt, забыв об уравнении Ньютона.
Если положить f (х) = sin (2πх/λ), то получим синусоидальную бегущую волну
Записывая эту волну в более привычном виде
находим обычное соотношение между частотой и длиной волны: . Общее решение (5.10) описывает и движение волнового импульса, изображенного на рис. 5.3. Описывает оно и стоячие волны. Например, если взять
f (х) = g (х) = ½ sin (2πх/λ),
то легко найти, что
у (t, х) = sin (2πх/λ) cos (2πvt).
В общем случае, если заданы начальные значения отклонений и скоростей всех точек струны, т. е. значения у и при t = 0 и всех значениях х, то можно найти вид функций f и g при всех значениях аргументов и тем самым определить все дальнейшее движение струны. Точно так же по начальным отклонениям и скоростям двух грузиков определялись неизвестные параметры А1, А2, t1, t2 в формуле (5.6); только теперь вместо неизвестных параметров определяются неизвестные функции f и g.