Мы еще не раз встретимся с конкретными применениями решения Д'Аламбера, а сейчас лишь отметим, что именно оно и вынудило Эйлера и Лагранжа отказаться от принципа суперпозиции Даниила Бернулли. Действительно, согласно этому принципу общее движение струны можно было бы представить как сумму (суперпозицию) гармонических синусоидальных движений, а это означало бы, что произвольную функцию можно представить в виде суммы тригонометрических функций. Такая возможность казалась Эйлеру и Лагранжу совершенно невероятной. Поэтому они придерживались мнения, что принцип суперпозиции хорош для систем из конечного числа материальных точек, но неприменим к таким «сплошным» объектам, как струна.
Разрешить многолетние споры вокруг этой проблемы сумел лишь Фурье в 1807 г., который показал, что произвольную функцию, определенную на конечном отрезке, действительно можно представить в виде бесконечной суммы тригонометрических функций. Это обобщение разложения на моды носит название
Пора, видимо, написать это уравнение *). До сих пор оно было чем-то вроде таинственного персонажа в пьесе, которого все боятся, но никто не видел, и можно подумать, что это уравнение окажется очень сложным. На самом деле несложно догадаться, что уравнение должно быть очень простым, если у него так просто выглядит общее решение. В чем же состоит необычайная простота решения Д'Аламбера? Она заключается в том, что решение выражено через произвольные функции
*) для понимания дальнейшего знать это уравнение полезно, но не обязательно. Вполне достаточно освоиться с бегущими волнами Д'Аламбера (5.10).
Это легко описать математически. Сначала найдем уравнение для волны, бегущей направо. Вспоминая определение производной получаем
Выбирая Δx = -
Это и есть
Это простое уравнение и его обобщения на случай функций, зависящих от нескольких координат, играют такую же роль в физике непрерывных систем, как уравнение движения простого линейного маятника в механике материальной точки (в новых обозначениях оно записывается в виде
В наше время волновое уравнение стало настолько привычным, что его эффективности никто уже не удивляется. Однако если попытаться мысленно охватить все, что было сделано с помощью этого уравнения, вообразить, какое богатство явлений природы скрывается за столь простой формулой, то эпитеты «удивительное» или «необычайное» не покажутся не уместными. Один выдающийся современный физик как-то написал популярную статью «О непостижимой эффективности математики в естественных науках». В эффективности волнового уравнения, конечно, есть что-то непостижимое, что бы ни говорили люди, которые умеют объяснить все.
О дискретном и непрерывном