Читаем Многоликий солитон полностью

Мы еще не раз встретимся с конкретными применениями решения Д'Аламбера, а сейчас лишь отметим, что именно оно и вынудило Эйлера и Лагранжа отказаться от принципа суперпозиции Даниила Бернулли. Действительно, согласно этому принципу общее движение струны можно было бы представить как сумму (суперпозицию) гармонических синусоидальных движений, а это означало бы, что произвольную функцию можно представить в виде суммы тригонометрических функций. Такая возможность казалась Эйлеру и Лагранжу совершенно невероятной. Поэтому они придерживались мнения, что принцип суперпозиции хорош для систем из конечного числа материальных точек, но неприменим к таким «сплошным» объектам, как струна.

Разрешить многолетние споры вокруг этой проблемы сумел лишь Фурье в 1807 г., который показал, что произвольную функцию, определенную на конечном отрезке, действительно можно представить в виде бесконечной суммы тригонометрических функций. Это обобщение разложения на моды носит название ряда Фурье. Любопытно, что при доказательстве своей фундаментальной теоремы Фурье в наибольшей степени опирался на исследования Эйлера и Лагранжа. Отрицание Лагранжем принципа суперпозиции кажется тем более удивительным, что именно он первым ясно установил связь между колебаниями цепочки частиц и движениями струны.

Пора, видимо, написать это уравнение *). До сих пор оно было чем-то вроде таинственного персонажа в пьесе, которого все боятся, но никто не видел, и можно подумать, что это уравнение окажется очень сложным. На самом деле несложно догадаться, что уравнение должно быть очень простым, если у него так просто выглядит общее решение. В чем же состоит необычайная простота решения Д'Аламбера? Она заключается в том, что решение выражено через произвольные функции f и g, но каждая из них реально зависит не от координаты и времени, а от простейшей их линейной комбинации. Мы можем просто нарисовать графики функций f(x) и g(x) и двигать их равномерно в противоположных направлениях оси х. Сумма таких функций и будет в каждый момент времени изображать решение Д'Аламбера.

*) для понимания дальнейшего знать это уравнение полезно, но не обязательно. Вполне достаточно освоиться с бегущими волнами Д'Аламбера (5.10).

Это легко описать математически. Сначала найдем уравнение для волны, бегущей направо. Вспоминая определение производной получаем

Выбирая Δx = -vΔt, находим, что . Точно так же можно убедиться, что . Эти уравнения описывают волны, которые могут распространяться лишь в одну сторону. Такие уравнения полезны, если мы хотим описать распространение волны горения или нервного импульса. Для того чтобы найти уравнение, описывающее волны, бегущие в двух направлениях, проще всего поступить так. Заметим, что f и f' также зависят только от х - vt, и поэтому обе функции удовлетворяют тому же уравнению, что и f. Исключив смешанную производную f', легко найти, что . Точно так же убеждаемся, что . Так как операция дифференцирования линейна, то отсюда следует, что у = f + g удовлетворяет уравнению

Это и есть волновое уравнение Д'Аламбера. Мы получили его не из физической модели, а просто показали, что сумма любых двух функций f (х - vt) и g (x + vt) удовлетворяет этому уравнению. Ссылаясь на авторитет Д'Аламбера, мы утверждаем и обратное: всякую функцию у (t, х), производные которой по времени и координате удовлетворяют соотношению (5.11), можно представить как сумму двух таких функций.

Это простое уравнение и его обобщения на случай функций, зависящих от нескольких координат, играют такую же роль в физике непрерывных систем, как уравнение движения простого линейного маятника в механике материальной точки (в новых обозначениях оно записывается в виде ). Удивительно, что переход от одной точки к такому бесконечно более сложному объекту, как струна, «состоящая» из бесконечного числа точек, привел к столь простой теории. Удивительно также необычайное число приложений волнового уравнения — от волн в «океанах воды, воздуха и эфира», как сказал бы Рассел, — до волн, описывающих элементарные частицы.

В наше время волновое уравнение стало настолько привычным, что его эффективности никто уже не удивляется. Однако если попытаться мысленно охватить все, что было сделано с помощью этого уравнения, вообразить, какое богатство явлений природы скрывается за столь простой формулой, то эпитеты «удивительное» или «необычайное» не покажутся не уместными. Один выдающийся современный физик как-то написал популярную статью «О непостижимой эффективности математики в естественных науках». В эффективности волнового уравнения, конечно, есть что-то непостижимое, что бы ни говорили люди, которые умеют объяснить все. 

<p>О дискретном и непрерывном </p>
Перейти на страницу:

Все книги серии Библиотечка Квант

Похожие книги