...Между отдельными существующими вещами всегда
находятся другие, а между ними опять другие. И, та-
ким образом, сущее беспредельно.
Вернемся, однако, к «суровой прозе», воплощенной в уравнении (5.8). Оно связано не с близкой музам струной, а с прозаическими «грузиками на пружинках», да и выглядит куда менее элегантно, чем волновое уравнение. Тем не менее эти уравнения тесно связаны друг с другом. Это не удивительно, если наша (т. е. ньютонова) «грузопружинная» модель может дать разумное приближенное описание волн в сплошных средах. Первым это установил в 1754 г. все тот же неутомимый Лагранж, но окончательной ясности добился лишь Коши (1830 г.).
Он показал, каким образом можно найти движение струны по начальным значениям отклонений и скоростей точек струны (в математике эта задача и называется
Понимание связи между ньютоновской дискретной средой (от лат. discгetus — прерывистый, разделенный) и эйлеровой непрерывной средой очень важно, так как в разных случаях удобно переходить от дискретного языка к непрерывному и обратно.
Например, если изучаются упругие волны в кристаллах, то обычно можно забыть об их атомной структуре и считать кристалл просто непрерывной упругой средой. Атомная структура скажется на том, что упругие свойства кристалла будут разными в разных направлениях. Мы, однако, пойдем намеченным путем, так как у нас есть надежные уравнения (5.8), описывающие движения каждой точки дискретной системы.
Предположим для определенности, что грузопружинная модель, изображенная на рис. 5.1, должна приближенно воспроизводить продольные колебания и волны в упругом стержне. Точно так же можно рассмотреть звуковые волны в трубе, поперечные колебания струны и т. п. Идея перехода к непрерывной среде ясна: нужно уменьшать массы грузиков и длины пружинок так, чтобы средняя линейная плотность (т. е. масса на единицу длины ρ1 = m/α) и упругость пружины оставались постоянными.
Сначала надо немного точнее определить, что такое упругость пружины. В правой части уравнения (5.8) написана сила, действующая на
Удлинения стержня и пружины пропорциональны их длине. Например, если пружинка удлиняется на Δ
Уравнение (5.8) легко переписать так, чтобы оно зависело лишь от ρ1 =
Движение каждой частицы стержня определяется, если известно решение
Скорость распространения волн по цепочке можно найти, и не прибегая к уравнению Д'Аламбера. Если по цепочке бежит волна неизменной формы со скоростью