Читаем Models of the Mind полностью

Чтобы проверить свое уравнение на данных, Лапик обратился к стандартному эксперименту с лягушачьей лапкой: он подавал на нерв лягушки напряжение разной величины и фиксировал время, необходимое для появления реакции. Лапик предположил, что когда нерв лягушки реагирует, это происходит потому, что напряжение на его мембране достигло определенного порога. Поэтому он рассчитал, сколько времени потребуется его модели для достижения этого порога при каждом разном напряжении. Сравнив предсказания своей модели с результатами экспериментов, Лапик обнаружил хорошее совпадение. Он мог предсказать, как долго нужно подавать определенное напряжение, чтобы нерв отреагировал.

Лапик был не первым, кто записал такое уравнение. Предыдущий ученый, Жорж Вейс, предложил свою догадку о том, как описать эту зависимость между напряжением и временем. И это была относительно хорошая догадка: она лишь немного отклонялась от предсказаний Лапика, например, в случае напряжения, приложенного в течение длительного времени. Но подобно тому, как малейшая улика на месте преступления может изменить картину всего события, это небольшое расхождение между предсказаниями уравнения Лапика и тем, что было до него, на самом деле означало глубокое расхождение в понимании.

В отличие от уравнения Лапика, уравнение Вайса не было вдохновлено механикой клетки и не предназначалось для интерпретации в качестве эквивалентной схемы. Это было скорее описание данных, чем их модель. Если описательное уравнение - это, как мультипликационная анимация события - фиксирует его внешний вид, но без глубины, то модель - это повторное воспроизведение. Таким образом, математическая модель нервного импульса должна иметь те же подвижные части, что и сам нерв. Каждая переменная должна быть сопоставима с реальным физическим объектом, а их взаимодействие должно отражать реальный мир. Именно это и обеспечила эквивалентная схема Лапика: уравнение, в котором термины можно интерпретировать.

Еще до Лапика другие исследователи заметили сходство между электрическими инструментами, используемыми для изучения нерва, и самим нервом. Лапик в значительной степени опирался на работы Вальтера Нернста, который заметил, что способность мембраны разделять ионы может лежать в основе потенциала действия. Другой ученик дю Буа-Реймона, Людимар Герман, говорил о нерве в терминах конденсаторов и резисторов. И даже сам Гальвани представлял себе нерв, работающий аналогично его лейденской банке. Но Лапик с его явной эквивалентной схемой и количественным соответствием данным сделал еще один шаг вперед в аргументации в пользу нерва как точного электрического устройства. Как он писал: "Физическая интерпретация, к которой я пришел сегодня, придает точный смысл нескольким важным ранее известным фактам о возбудимости... Мне кажется, это повод считать ее шагом в направлении реализма".

Из-за ограниченного оборудования большинство нейробиологов того времени записывали данные с целых нервов. Нервы представляют собой пучки аксонов - волокон, по которым отдельные нейроны передают сигналы другим клеткам. Записывая сразу множество аксонов, легче уловить изменения тока, которые они производят, но сложнее увидеть детальную форму этих изменений. Однако, вставляя электрод в один нейрон, можнонапрямую регистрировать напряжение на его мембране. Как только в начале XX века появилась технология наблюдения за отдельными нейронами, потенциал действия стал гораздо более понятным.

Одна из определяющих особенностей потенциала действия, замеченная английским физиологом Эдгаром Адрианом в 1920-х годах, - принцип "все или ничего". Принцип "все или ничего" гласит, что нейрон либо испускает потенциал действия, либо нет - ничего промежуточного. Другими словами, каждый раз, когда нейрон получает достаточно входного сигнала, напряжение на его мембране меняется - и меняется абсолютно одинаково. Поэтому, как гол в хоккее считается одинаково, независимо от того, с какой силой шайба забита в сетку, так и сильная стимуляция нейрона не делает его потенциал действия больше или лучше. Все, что может сделать сильная стимуляция, - это заставить нейрон излучать больше точно таких же потенциалов действия. Таким образом, нервная система больше заботится о количестве, чем о качестве.

Перейти на страницу:

Похожие книги

Мозг и разум в эпоху виртуальной реальности
Мозг и разум в эпоху виртуальной реальности

Со Ёсон – южнокорейский ученый, доктор наук, специалист в области изучения немецкого языка и литературы, главный редактор издательства Корейского общества Бертольда Брехта, исследующий связи различных дисциплин от театрального искусства до нейробиологии.Легко ли поверить, что Аристотель и научно-фантастический фильм «Матрица» проходят красной нитью через современную науку о мозге и философию Спинозы, объясняя взаимоотношения мозга и разума?Как же связаны между собой головной мозг, который называют колыбелью сознания, и разум, на который как раз и направлена деятельность сознания?Можно ли феномен разума, который считается решающим фактором человеческого развития, отличает людей от животных, объяснить только электрохимической активностью нейронов в головном мозге?Эта книга посвящена рассмотрению подобных фундаментальных вопросов и объединяет несколько научных дисциплин, которые развились в ходе напряженных споров о соотношении материи и разума, которые берут своё начало с древних времен и продолжаются по сей день. Данная работа не является простым цитированием ранее написанных исследований, направленным на защиту своей позиции, она подчеркивает необходимость появления нового исследования мозга, которое должно будет вобрать в себя как философские умозаключения, так и научную доказательную базу.В формате PDF A4 сохранен издательский макет.

Со Ёсон

Биология, биофизика, биохимия
Расширенный фенотип
Расширенный фенотип

«Расширенный фенотип» – одна из лучших книг известного учёного и видного популяризатора науки Ричарда Докинза. Сам автор так сказал про неё в предисловии ко второму изданию: «Думаю, что у большинства учёных – большинства авторов – есть какая-то одна публикация, про которую они говорили бы так: не страшно, если вы никогда не читали моих трудов кроме "этого", но "этот" пожалуйста прочтите. Для меня таким трудом является "Расширенный фенотип"». Помимо изложения интересной научной доктрины, а также весьма широкого обзора трудов других исследователей-эволюционистов, книга важна своей глубоко материалистической философской и мировоззренческой позицией, справедливо отмеченной и высоко оцененной в послесловии профессионального философа Даниэла Деннета.

Ричард Докинз

Биология, биофизика, биохимия