Читаем Models of the Mind полностью

Природа нейрона "все или ничего" согласуется с интуицией Лапика о пороге. Он знал, что напряжение на мембране должно достичь определенного значения, чтобы нерв отреагировал. Но как только оно достигало этого значения, ответ был ответом.

К 1960-м годам принцип "все или ничего" был объединен с уравнением Лапика в математическую модель, известную как "нейрон с утечкой и огнем" (leaky integrate-and-fire neuron):"утечка" - потому что наличие резистора означает утечку части тока; "интеграция" - потому что конденсатор интегрирует оставшуюся часть тока и сохраняет ее в виде заряда; и "огонь" - потому что, когда напряжение на конденсаторе достигает порога, нейрон "выстреливает", или излучает потенциал действия. После каждого "выстрела" напряжение возвращается к исходному уровню, чтобы снова достичь порога, если на нейрон подается больше входного сигнала.

Несмотря на простоту модели, она может воспроизводить особенности работы реальных нейронов: например, при сильном и постоянном входном сигнале нейрон модели будет многократно запускать потенциалы действия с небольшой задержкой между каждым из них; если же входной сигнал достаточно слабый, он может оставаться включенным бесконечно долго, не вызывая ни одного потенциала действия.

Эти модельные нейроны можно также заставить образовывать связи - соединяться друг с другом таким образом, чтобы возбуждение одного из них генерировало входной сигнал для другого. Это дает моделистам более широкие возможности: воспроизводить, изучать и понимать поведение не только отдельных нейронов, но и целых сетей.

С момента своего появления такие модели использовались для изучения множества аспектов работы мозга, включая болезни. Болезнь Паркинсона - это заболевание, при котором нарушается работа нейронов в базальных ганглиях. Расположенные глубоко в мозге, базальные ганглии состоят из множества областей с замысловатыми латинскими названиями. Когда при болезни Паркинсона нарушается питание одной из областей - стриатума, это выводит из равновесия остальные базальные ганглии. В результате изменений в стриатуме субталамическое ядро (еще одна область базальных ганглиев) начинает активнее работать, что вызывает возбуждение нейронов во внешнем глобусе паллидуса (еще одна область базальных ганглиев). Но эти нейроны посылают связи обратно в субталамическое ядро, котороене дает этим нейронам разгореться еще больше, что, в свою очередь, отключает и сам внешний паллидус глобуса. Результатом этой сложной сети связей являются осцилляции: нейроны в этой сети стреляют больше, потом меньше, потом снова больше. Эти ритмы, по-видимому, связаны с двигательными проблемами пациентов с болезнью Паркинсона - тремором, замедленными движениями и ригидностью.

В 2011 году исследователи из Фрайбургского университета построили компьютерную модель этих областей мозга, состоящую из 3 000 негерметичных интегративных и огневых нейронов. В модели нарушение работы клеток, представляющих стриатум, вызывало те же проблемные волны активности, которые наблюдаются в субталамических ядрах у пациентов с болезнью Паркинсона. Модель, демонстрирующая признаки заболевания, может быть использована для изучения способов его лечения. Например, введение импульсов входного сигнала в субталамическое ядро модели разрушало эти волны и восстанавливало нормальную активность. Но импульсы должны были быть в правильном темпе - слишком медленные колебания ухудшались, а не улучшались. Глубокая стимуляция мозга - процедура, при которой импульсы электрической активности вводятся в субталамическое ядро пациентов с болезнью Паркинсона, - как известно, помогает облегчить тремор. Врачи, использующие этот метод лечения, также знают, что частота импульсов должна быть высокой - около 100 раз в секунду. Эта модель дает подсказку, почему высокая частота стимуляции работает лучше, чем низкая. Таким образом, моделирование мозга как серии взаимосвязанных цепей позволяет понять, как применение электричества может регулировать его работу.

Изначально Лапика интересовало время возникновения нейронных импульсов. Собрав воедино нужные компоненты электрической цепи, он правильно уловил время возникновения потенциалов действия, но создание этой схемы, заменяющей нейрон, сделало нечто большее. Он создалпрочный фундамент, на котором можно было построить огромные сети из тысяч взаимосвязанных клеток. Теперь компьютеры по всему миру перебирают уравнения этих искусственных нейронов, моделируя, как настоящие нейроны интегрируются и работают в условиях здоровья и болезни.

* * *

Летом 1939 года Алан Ходжкин отправился на маленькой рыбацкой лодке к южному побережью Англии. Его целью было поймать немного кальмаров, но в основном его мучила морская болезнь.

Перейти на страницу:

Похожие книги

Мозг и разум в эпоху виртуальной реальности
Мозг и разум в эпоху виртуальной реальности

Со Ёсон – южнокорейский ученый, доктор наук, специалист в области изучения немецкого языка и литературы, главный редактор издательства Корейского общества Бертольда Брехта, исследующий связи различных дисциплин от театрального искусства до нейробиологии.Легко ли поверить, что Аристотель и научно-фантастический фильм «Матрица» проходят красной нитью через современную науку о мозге и философию Спинозы, объясняя взаимоотношения мозга и разума?Как же связаны между собой головной мозг, который называют колыбелью сознания, и разум, на который как раз и направлена деятельность сознания?Можно ли феномен разума, который считается решающим фактором человеческого развития, отличает людей от животных, объяснить только электрохимической активностью нейронов в головном мозге?Эта книга посвящена рассмотрению подобных фундаментальных вопросов и объединяет несколько научных дисциплин, которые развились в ходе напряженных споров о соотношении материи и разума, которые берут своё начало с древних времен и продолжаются по сей день. Данная работа не является простым цитированием ранее написанных исследований, направленным на защиту своей позиции, она подчеркивает необходимость появления нового исследования мозга, которое должно будет вобрать в себя как философские умозаключения, так и научную доказательную базу.В формате PDF A4 сохранен издательский макет.

Со Ёсон

Биология, биофизика, биохимия
Расширенный фенотип
Расширенный фенотип

«Расширенный фенотип» – одна из лучших книг известного учёного и видного популяризатора науки Ричарда Докинза. Сам автор так сказал про неё в предисловии ко второму изданию: «Думаю, что у большинства учёных – большинства авторов – есть какая-то одна публикация, про которую они говорили бы так: не страшно, если вы никогда не читали моих трудов кроме "этого", но "этот" пожалуйста прочтите. Для меня таким трудом является "Расширенный фенотип"». Помимо изложения интересной научной доктрины, а также весьма широкого обзора трудов других исследователей-эволюционистов, книга важна своей глубоко материалистической философской и мировоззренческой позицией, справедливо отмеченной и высоко оцененной в послесловии профессионального философа Даниэла Деннета.

Ричард Докинз

Биология, биофизика, биохимия