Стоматогастральный ганглий - это цепь из 25-30 нейронов, расположенных в кишечнике омаров и других ракообразных. Благодаря своим связям эти нейроны выполняют простую, но крайне важную работу: производят ритмичные мышечные сокращения, которые управляют пищеварением. Ева Мардер, профессор Университета Брандейса в Массачусетсе, потратила полвека на изучение этой горстки нейронов. Мардер родилась и выросла в Нью-Йорке, но образование получила в Массачусетсе, а затем в Калифорнии. Хотя ее докторская работа в Калифорнийском университете в Сан-Диего была посвящена нейронаукам, Мардер всегда проявляла склонность к математике: в начальной школе она пролистала учебники по математике, предназначенные для учеников на два года старше ее. Этот эрудит проникает в ее науку. На протяжении всей своей карьеры она сотрудничала с исследователями из разных областей, в том числе с Ларри Эбботом (упоминавшимся в главе 1), когда он переходил от физики элементарных частиц к известному теоретическому нейробиологу. Сочетая экспериментальную точность с математическим мышлением, Мардер тщательно исследовала работу этой маленькой схемы омара как физически, так и с помощью компьютерного моделирования.
Коннектома стоматогастрального ганглия омара известна с 1980-х годов. 30 нейронов этого ганглия образуют 195 связей и посылают сигналы к мышцам желудка. В своей докторской диссертации Мардер выясняла, какие химические вещества используют эти нейроны для связи. Помимо стандартных нейротрансмиттеров - химических веществ, проходящих через маленькую синаптическую щель между нейроном, который их выделяет, и нейрономихпринимает, - Мардер обнаружила целый ряд нейромодуляторов
Нейромодуляторы - это химические вещества, которые изменяют настройки нейронной цепи. Они могут изменять силу связей между нейронами в большую или меньшую сторону, заставлять нейроны работать чаще, реже или по разным схемам. Нейромодуляторы вызывают эти изменения, цепляясь за рецепторы, встроенные в клеточную мембрану нейрона. Нейромодуляторы примечательны в первую очередь тем, откуда они берутся и как попадают в нейрон. В самом крайнем случае нейромодулятор может высвобождаться из другой части мозга или тела и через кровь добираться до места назначения. В других случаях нейромодулятор высвобождается локально из близлежащих нейронов - но независимо от того, откуда он поступает, нейромодуляторы имеют тенденцию омывать цепь без разбора, затрагивая множество нейронов и синапсов диффузным образом. Если обычная нейротрансмиссия похожа на письмо, отправленное между двумя нейронами, то нейромодуляция - это листовка, разосланная всему сообществу.
В 1990-х годах Мардер вместе с сотрудниками своей лаборатории и лаборатории Майкла Нусбаума, профессора Пенсильванского университета, экспериментировала с нейромодуляторами в цепи стоматогастрального ганглия. Обычно эта цепь вырабатывает устойчивый ритм, когда определенные нейроны в популяции срабатывают примерно раз в секунду. Но когда экспериментаторы ввели в схему нейромодуляторы, это поведение изменилось. Некоторые нейромодуляторы увеличивали ритм: те же нейроны стреляли, но чаще. Активируя нейроны, которые обычно молчали. Нейромодуляторы, вызывающие эти изменения, выделялись из нейронов, которые обычно обеспечивают вход в эту цепь. Это означает, что различные модели выходного сигнала могут возникать естественным образом в течение всей жизни животного. В более искусственных условиях нейромодуляторы, добавленные экспериментаторами, могут вызывать еще более значительные и разнообразные изменения.
Важно отметить, что на протяжении всех этих экспериментов базовая сеть не менялась. Нейроны не добавлялись и не удалялись, не сокращались и не наращивались связи. Заметные изменения в поведении происходили исключительно благодаря небольшому количеству нейромодуляторов в устойчивой структуре.
Масштабные усилия, затраченные на получение коннектома, предполагают определенную отдачу от его наличия, но отдача будет меньше, если связь между структурой и функцией окажется слабее, чем могло показаться. Если нейромодуляторы могут освободить активность нейронов в цепи от строгих ограничений их архитектуры, значит, структура - это не судьба. Возможно, это не вызывало бы такого беспокойства, если бы нейромодуляция была явлением, характерным только для стоматогастрального ганглия. Однако это далеко от истины. Мозг постоянно купается в модулирующих молекулах. У разных видов нейромодуляторы отвечают за все - от сна до обучения, от линьки до еды. Нейромодуляция - это правило, а не исключение.