Научные дискуссии казались бесконечными, и Макс Борн, который предложил наиболее удовлетворительный ответ, должен был ждать около 30 лет, чтобы получить за него Нобелевскую премию. Шрёдингер сам не мог принять свою интерпретацию. Он всегда думал о том, что ψ представляла распределение заряда электрона, как если бы частица рассыпалась в пространстве. Словно разлитая вода, накапливающаяся в углублениях и избегающая возвышенностей, электрический заряд концентрируется больше в одних местах, чем в других. Волновая функция рисует карту распределения плотностей. Шрёдингер стремился к классической физике, но научная честность заставляла его заметить, что его традиционное видение теряет силу во владениях атома. Выход нашелся в отказе от примитивного значения частицы: «Материя представляет собой волны и только волны». Вселенная состояла из колебаний, которые часто сосредотачивались в определенных зонах пространства, создавая иллюзию частиц с макроскопической точки зрения. Математики могут играть с волновыми конструктивными и деструктивными интерференциями, суммируя их и заставляя принимать почти все формы, какие только возможно, особенно форму сгустка или, говоря техническим языком, форму волнового пакета (см. рисунок).
Проблема состоит в том, что практически невозможно поддерживать связность структуры по мере ее перемещения, и все заканчивается тем, что она распадается, словно айсберг, подходя к экватору. Волны стремятся к тому, чтобы рассеяться при малейшем столкновении, а пакет раскрывается, и поведение частиц, когда они сцепляются с окружающей средой, сразу же меняется. К концу четвертого дня творения электрон, заключенный внутри атома, мог бы рассеяться по четырем концам Солнечной системы. Перед наукой встала та же проблема, что и перед де Бройлем: необходимо было заново гармонизировать два противоположных объекта — волну и частицу.
Одним из важных последствий уравнения Шрёдингера является то, что оно объясняет квантовые феномены, такие как скачки, с помощью определенных функций определенных переменных, а также дифференциальных уравнений, открытых Ньютоном. Шрёдингер представлял электрон как электрически заряженное облако, обволакивающее атом, при этом сам электрон преобразовывался в пространственно-распределенную электромагнитную волну, движущуюся непрерывно, согласно приказам ψ, и без всякого квантового скачка:
Когда атом поглощал или излучал свет, ψ изменялась совсем как струна, тронутая гитаристом. Серия различных энергетических состояний напоминала о непрерывном ряде музыкальных нот. Шрёдингер поддерживал эту точку зрения до конца жизни. Он сформулировал первое основное дифференциальное уравнение квантовой механики; первое, определяющее самодостаточное условие, не будучи классической подпоркой; первое, которое не было пародией на прошлую и современную физику. Его уравнение — то же, что ньютоновское F=mx а для классической механики. Оно предопределило развитие квантовых систем и само содержало зачатки этого развития. Функция ψ, введенная Шрёдингером, стала для физиков необходимой опорой, которой они пользовались в то время, когда квантовая наука подрывала основы, но пока еще не представляла собой целостной концепции. Шрёдингер нарисовал карту территории и создал путеводитель, позволяющий ее изучать без риска потеряться. Все это наполнило энтузиазмом многих молодых исследователей. Один из них, физик Ганс Бете, очень высоко оценил значение уравнения Шрёдингера, сказав о нем: