Главная загадка уравнения Шрёдингера (которая будет решена в следующей главе) — какая физическая величина представляет знаменитую функцию ψ? Этот вопрос вызвал бурные споры с того самого момента, когда он был поставлен.
Наглядность функции Ψ
Чтобы описать реальный атом водорода, необходимо ввести три координаты:
В трех измерениях анализ уравнения усложняется. Очевидно, чтобы визуализировать решения, необходимы четыре оси: одна — для ψ и три другие — для х, у и z. И если мы введем время t, то нам понадобится пятая ось. Но несмотря на эти сложности, можно сделать несколько замечаний относительно вида искомого решения. Например, проясняя (1), мы замечаем, что сумма динамики изменения касательных ψ
которую мы назовем Rизменения
, равна:Переобозначим постоянные для большей ясности:
Когда мы удаляемся от начала координат (х, у и z, большие), SQRT(x² + у² + z²) приобретает намного большее значение, чем b, и коэффициент уменьшается до тех пор, пока не исчезнет. Таким образом, из уравнения следует:
Rизменения
=3Ψ.Принимая во внимание, что одно из условий, поставленных функции ψ, было таким, чтобы она стремилась к нулю при удалении от ядра, произведение постоянной а через ψ в равной степени будет тяготеть к нулю. Тогда последнее уравнение показывает, что сумма динамики изменения трех касательных стремится к нулю с ростом расстояния: Rизменения
-> О· Кажется разумным предположить, что они изменятся по отдельности. Если бы это было так, у них была бы возможность соединиться, чтобы исчезнуть при сложении. Вдалеке от протонов ψ исчезает, и касательные принимают горизонтальное положение. И наоборот, когда электрон находится рядом с ядром, где значения переменных х, у и z, малы, сумма динамики изменения касательных будет выше. Это поведение обязано тому факту, что при Rизменения выражениестремительно растет и превышает постоянную а. На кривой функции ψ мы увидим взлеты и падения около начала координат. Затем функция успокаивается при условии, что она удаляется (см. рисунок).
Для изучения вида функции ψ она может быть разделена на три зоны. B A Rизменения
увеличивается, и ψ представляет несколько касательных. В С Rизменения стремится к нулю как касательная ψ.