Читаем Начало бесконечности полностью

Подобно тому, как добавлением пиктограмм можно было расширять словарь древней системы письма, добавлением символов можно было расширить диапазон системы записи чисел, что и делалось. Но в получающейся системе всегда был символ с самым большим значением, а значит, она не была универсальной в плане совершения арифметических операций без поштучного пересчёта.

Единственный способ освободить арифметику от «палочек» — использовать правила с универсальной сферой применимости. Как и с алфавитами, достаточно будет небольшого набора базовых правил и символов. В универсальной системе, которой все пользуются сегодня, десять символов, это цифры от 0 до 9, а своей универсальностью она обязана правилу, в соответствии с которым значение цифры зависит от её положения в числе. Например, цифра 2 означает два, если она сама по себе, но двести, если она присутствует в числе 204. В таких «позиционных» системах нужны «заполнители» разрядов, как, например, цифра 0 в числе 204, единственная функция которой — сдвинуть двойку в позицию, означающую «двести».

Эта система зародилась в Индии, но когда именно, неизвестно. Возможно, это случилось лишь в девятом веке, поскольку до этого она вроде как встречается только в нескольких неоднозначных документах. Так или иначе, её огромный потенциал для науки, математики, техники и торговли широко не осознавался. Примерно в то же время её взяли на вооружение арабские учёные, но в обиход в арабском мире она вошла только через тысячу лет. Любопытное отсутствие стремления к универсальности повторилось и в средневековой Европе: индийские цифры были переняты у арабов лишь несколькими учёными в десятом веке (и в результате были ошибочно названы «арабскими цифрами»), но в повседневное использование они вошли только столетия спустя.

Уже к 1900 году до нашей эры древние вавилоняне изобрели в сущности универсальную систему счисления, но и они вполне могли не задумываться об универсальности и даже вовсе о ней не знать. Это была позиционная система, но очень громоздкая по сравнению с индийской. В ней было 59 «цифр», каждая из которых записывалась как число в системе типа римской. Пользоваться ею для совершения арифметических операций с числами в повседневной жизни было ещё сложнее, чем римскими цифрами[30]. В этой системе также не было символа для нуля, а вместо заполнителей использовались пробелы. Изобразить ноль в конце строки было никак нельзя, эквивалента десятичной запятой тоже не было (это всё равно что в нашей системе числа 200, 20, 2, 0,2 и так далее все записывались бы как 2, и различить их можно было бы только по контексту). Всё это наводит на мысль, что при разработке системы задача добиться универсальности не была основной, и когда она была достигнута, её особо не оценили.

Возможно, понять эту странную закономерность позволит примечательный случай, произошедший в третьем веке до нашей эры с древнегреческим учёным и математиком Архимедом. В ходе своих исследований в области астрономии и чистой математики он столкнулся с необходимостью производить арифметические операции с достаточно большими числами, и ему пришлось изобрести свою собственную систему записи. Он отталкивался от греческой, с которой был знаком и которая была похожа на римскую[31], только в ней символ с наибольшим значением обозначался через M — 10 000 (один мириад). Диапазон системы уже был расширен правилом, предписывающим умножать на десять тысяч число, написанное над M. Например, двадцать обозначалось символом κ, а четыре — δ, и двадцать четыре мириада (240 000) можно было записать как .

Если бы только по этому правилу можно было создавать многоуровневые числа, чтобы означало бы 24 мириада мириадов, система стала бы универсальной. Но, очевидно, греки до этого так и не дошли[32]. И, что более удивительно, не дошёл и Архимед. Его система строилась на другой идее, напоминающей современное «экспоненциальное представление» (когда, скажем, два миллиона записываются как 2×106), только в степень возводилось не десять, а мириад мириадов (100 000 000). Но в этом случае требовалось, чтобы число, являвшееся показателем степени (в которую возводились сто миллионов), существовало в греческой системе. Другим словами, показатель степени не мог превышать сто миллионов или около того. Значит, эта конструкция иссякала после числа, которое мы бы записали как 10 800 000 000. Если бы не это дополнительное правило, у Архимеда получилась бы универсальная система, хотя и неоправданно неуклюжая.

Даже сегодня числа, больше 10 800 000 000, могут пригодиться разве что математикам, и то очень редко. Но вряд ли Архимед наложил своё ограничение из-за этого, потому что на этом он не остановился. Продолжив исследовать понятие чисел, он добавил ещё одно расширение, на этот раз получилась ещё более странная система с основанием 10 800 000 000. Но снова он разрешил возводить это число только в степени, не превышающие 800 000 000, устанавливая таким образом произвольный предел где-то после 106,4×1017.

Перейти на страницу:

Похожие книги

Ешь правильно, беги быстро
Ешь правильно, беги быстро

Скотт Джурек – сверхмарафонец, то есть соревнуется на дистанциях больше марафонских, вплоть до 200-мильных. Эта книга – не просто захватывающая автобиография. Это еще и советы профессионала по технике бега и организации тренировок на длинные и сверхдлинные дистанции. Это система питания: Скотт при своих огромных нагрузках – веган, то есть питается только натуральными продуктами растительного происхождения; к этому он пришел, следя за своим самочувствием и спортивными результатами. И это в целом изложение картины мира сверхмарафонца, для которого бег – образ жизни и философия единения со всем сущим.Это очень цельная и сильная книга, которая выходит за рамки беговой темы. Это книга о пути к себе.На русском языке издается впервые.

Скотт Джурек , Стив Фридман

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Как работает мозг
Как работает мозг

Стивен Пинкер, выдающийся канадско-американский ученый, специализирующийся в экспериментальной психологии и когнитивных науках, рассматривает человеческое мышление с точки зрения эволюционной психологии и вычислительной теории сознания. Что делает нас рациональным? А иррациональным? Что нас злит, радует, отвращает, притягивает, вдохновляет? Мозг как компьютер или компьютер как мозг? Мораль, религия, разум - как человек в этом разбирается? Автор предлагает ответы на эти и многие другие вопросы работы нашего мышления, иллюстрируя их научными экспериментами, философскими задачами и примерами из повседневной жизни.Книга написана в легкой и доступной форме и предназначена для психологов, антропологов, специалистов в области искусственного интеллекта, а также всех, интересующихся данными науками.

Стивен Пинкер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Суперпамять
Суперпамять

Какие ассоциации вызывают у вас слова «улучшение памяти»? Специальные мнемонические техники, сложные приемы запоминания списков, чисел, имен? Эта книга не предлагает ничего подобного. Никаких скучных заучиваний и многократных повторений того, что придумано другими. С вами будут только ваши собственные воспоминания. Автор книги Мэрилу Хеннер – одна из двенадцати человек в мире, обладающих Сверхъестественной Автобиографической Памятью – САП (этот факт научно доказан). Она помнит мельчайшие детали своей жизни, начиная с раннего детства.По мнению ученых, исследовавших феномен САП, книга позволяет взглянуть по-новому на работу мозга и на то, как он создает и сохраняет воспоминания. Простые, практичные и забавные упражнения помогут вам усовершенствовать память без применения сложных техник, значительно повысить эффективность работы мозга, вспоминая прошлое, изменить к лучшему жизнь уже сейчас. Настройтесь на то, чтобы использовать силу своей автобиографической памяти!

Герасим Энрихович Авшарян , Мэрилу Хеннер

Детская образовательная литература / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Самосовершенствование / Психология / Эзотерика