Первые гоминиды мало отличались от своих собратьев человекообразных обезьян, живших с ними в одно и то же время и умножавших свою численность по закону Мальтуса. Поэтому логично предположить, что рост численности первых популяций рода Homo был экспоненциальным, хотя и чрезвычайно медленным.
С.П. Капица считает, что рост численности гоминид на первом этапе продолжительностью 2.8 млн лет был линейным. Во что поверить совершенно невозможно, поскольку в таком случае суммарный прирост численности популяций гоминид, предков современного человека, на протяжении 2.8 млн лет предполагается постоянным,
А на втором этапе длительностью 1.6 млн лет он полагает, что этот рост был уже чисто гиперболическим. Почему С.П. Капица не включает линейный член в свое уравнение? Дело здесь не только в том, что в этом случае может быть нарушено соответствие с демографическими данными, указывающими на гиперболический рост.
Причина в том, что если допустить присутствие такого пусть даже и «сколь угодно малого» члена в уравнении роста, то сразу же придется распрощаться с бессмысленным самоподобием роста, его масштабной инвариантностью, а также с автомодельностью развития – понятиями характерными для физических процессов, которые описываются простыми масштабно-инвариантными законами.
Действительно, решения уравнения dN/dt = αN + βN2
, в отличие от решений уравнения dN/dt = βN2, имеют встроенный масштаб времени[118].Тут может быть такое возражение: если членом αN на завершающих этапах роста можно пренебречь, то для этих этапов закон роста можно считать степенным со всеми необходимыми для физикалистской интерпретации гиперболического роста следствиями.
Ответ здесь такой: учитывая, что Мир-система ни в какие времена не была единым информационном полем, а информационная связность человечества на протяжении всей человеческой истории всегда только возрастала, квадратичный член βN2
мог начать оказывать существенное влияние лишь на завершающих этапах роста, т. е. в течение последних двух-трех столетий. (На самом деле, и мы впоследствии это покажем, линейным членом нельзя пренебречь ни на каком этапе роста.)Кроме того, не следует забывать о циклах эволюции и истории, которые вводятся в рассмотрение С.П. Капицей. Все время эволюции, начиная от момента -1.6 млн лет, делится им на одиннадцать периодов равной (в логарифмическом масштабе) длительности с неолитом посередине.
В течение каждого такого периода, длительность которого в три раза меньше предыдущего, численность также возрастала в три раза. Но такая цикличность возможна лишь при степенном, гиперболическом росте; и если на последних циклах линейным членом может быть и можно как-то пренебречь, то рост до неолита, да и в первые несколько тысячелетий после начала неолита, когда человечество не представляло собой системы ни в каком смысле слова, сделать это, очевидно, нельзя, и рост здесь, если исходить из представления о законе роста как о ПОС между численностью и приростом, должен быть экспоненциальным.
В таком случае ни о какой цикличности роста и демографическом императиве до начала новой эры говорить не приходится. Поэтому уравнение роста с дополнительным линейным членом в правой части С.П. Капице и не подходит, поскольку находится в антагонистическом противоречии с принципом демографического императива и цикличностью исторического развития.
Обоснование этой цикличности – вот та проблема, которая всегда волновала С.П. Капицу. Границы циклов в первом приближении были размечены еще до него историком И.М. Дьяконовым; проблема здесь в том, почему циклов примерно 10–15 и почему они расположены на шкале исторического времени так, как расположены. В чем глубинная природа цикличности?
Показатель сжатия исторического времени (знаменатель прогрессии сжимающихся исторических циклов) С.П. Капица принимает сначала равным числу Эйлера. Его значение е = 2.718… он почему-то считает наиболее подходящей естественной мерой такого сжатия, хотя число Эйлера – основание натуральных логарифмов – в чистом виде никогда не встречается ни в одном законе естествознания.
Потом он «округляет» его до трех, хотя средний коэффициент ускорения развития мировых цивилизаций согласно, например, исследованиям академика Ю.В. Яковца равен примерно двум. Свою постоянную времени τ = 42–45 лет С.П. Капица не связывает ни с каким глобальным циклическим историческим процессом, хотя она примерно равна продолжительности, вероятно, самого главного экономического и исторического цикла – Кондратьевского цикла.
Последний цикл его периодизации по длительности также примерно равен τ, а длительность всех остальных выражается целым числом τ. Эту константу он называет временем, «…определяемым внутренней предельной способностью системы человечества и человека к развитию». Что это означает – не понимает никто.