Во всех работах С.П. Капицы по теоретической демографии можно найти графики линейного, экспоненциального и гиперболического роста как возможные варианты роста численности человечества:
Уравнения роста как причинные законы здесь схожи, но только при гиперболическом росте численность популяции устремляется к бесконечности за конечный промежуток времени, что приводит, по его мнению, к режиму с обострением, выход из которого С.П. Капица, используя терминологию термодинамики, называет фазовым переходом. В этом, считает С.П. Капица, и состоит главный секрет гиперболического роста со всеми необходимыми для его «феноменологии» физикалистскими следствиями.
Представляется совершенно недопустимым ставить в один ряд столь разные для экологии популяций законы роста, один из которых распространен повсеместно, тогда как другие два как
Линейный закон, как мы уже отмечали ранее, дает постоянный, не зависящий от растущей численности прирост, что выглядит как полная несообразность. Гиперболический рост населения Земли, происходящий
Экология популяций – это не физика, у нее свои законы и главный из них – закон экспоненциального роста, который, по мнению физика (!), лауреата нобелевской премии В.Л. Гинсбурга, является первым и важнейшим законом (или даже принципом) экологии популяций.
И который утверждает, что естественное состояние популяции – это рост или уменьшение по экспоненте. Это столь же важный закон для экологии популяций, как первый закон Ньютона для физики. Ни одна популяция, принадлежащая какому-либо виду из всех когда-либо существовавших в природе, не росла в соответствии со степенным
Причина здесь в особенностях нелинейного степенного роста, которые не соответствуют никакому природному репродуктивному процессу. Следовательно, причинная модель степенного роста неприменима для описания динамики изменения численности популяций.
И если численность какой-то популяции, как, например, численность человечества все-таки растет по степенному закону, то такое возможно лишь потому, что закон, связывающий скорость роста с численностью, причинным законом в этом случае не является.
Главный закон роста численности изолированной популяции
В основе любых моделей лежат некоторые предположения. Ценность модели определяется тем, насколько ее характеристики соответствуют свойствам моделируемого объекта. Одним из самых фундаментальных предположений, лежащим в основе всех моделей роста, является предположение о пропорциональности скорости роста численности популяции – самой этой численности, будь то популяция зайцев, будь то популяция клеток.
В основе этого предположения лежит тот общеизвестный факт, что важнейшей характеристикой живых систем является их способность к размножению. Для многих одноклеточных организмов или клеток, входящих в состав клеточных тканей – это просто деление, то есть удвоение числа клеток через определенный интервал времени, называемый характерным временем деления.