Если же оставить линейный член плюс константа от нелинейного – получим простейшее линейное неоднородное дифференциальное уравнение первого порядка с постоянными коэффициентами. В зависимости от знаков С и α имеется четыре варианта роста численности:
• Случай С > 0, α > 0 можно интерпретировать как экспоненциальный рост популяции с учетом постоянного дополнительного прироста за счет клонирования. При этом численность популяции неограниченно возрастает.
• Случай С < 0, α > 0 – рост численности популяции рыб в «неограниченном» водоеме с заданной квотой отлова. Численность популяции неограниченно возрастает.
• Для случая С > 0, α < 0 можно предложить такую леденящую душу легенду: вымирающее человечество с отрицательным коэффициентом естественного прироста, постепенно заменяемое киборгами (инопланетянами) с тем же коэффициентом естественного прироста α < 0, что у людей; С – число киборгов, введенных в социум за месяц, αN – число погибших за месяц членов социума (киборгов и людей). При приближении к асимптоте N = -С/α «человеческая составляющая» социума устремляется к нулю.
• Случай С < 0, α < 0 – совсем уже печальный с N = 0 в итоге: планомерное истребление и без того уже вымирающей по естественным причинам популяции.
Все это примеры несвободного, управляемого роста популяции, т. к. в каждом из этих случаев прирост ее численности происходит не только за счет собственной способности популяции к размножению (αNΔt), но и за счет сторонних (управляющих) сил, вносящих постоянный вклад в этот прирост (СΔt). Следовательно, уравнение (4) не может считаться причинным законом, а при α > 0 (т. е. в случае роста популяции) процесс роста, описываемый этим уравнением, не может быть определен как простой автокаталитический, самоускоряющийся процесс.
Итак, уравнение (4) не может служить для описания динамики
Согласно теореме о разложении функции в степенной ряд, любую «достаточно хорошую» функцию всегда можно в такой ряд разложить. Следовательно, нелинейный член F(N) в правой части уравнения (5) можно разложить в ряд Маклорена; при этом первый и второй член разложения должны быть равны нулю: βo
= β1 = 0, т. к. константу отбрасываем, а линейный член равен αN, α > 0.Полученное уравнение с разделяющимися переменными можно проинтегрировать для каждой конкретной F(N). Отсутствие аддитивной константы в правой части приводит к тому, что она обращается в нуль при N = 0. Т. к. левая часть уравнения – это производная от численности по времени или скорость роста, то для кривой роста имеется горизонтальная асимптота, совпадающая с осью времени, т. е. такая же асимптота, как у экспоненты.
Это хороший показатель, он говорит о том, что рост численности популяции, определяемый обобщенным законом роста в его идеальном описании с непрерывной численностью, не имеет начала. Если бы рост начинался в некоторый фиксированный момент времени, пришлось бы давать какое-то объяснение выделенности этого момента, как, например, при описании степенного параболического роста.
Кроме того, очень важно понимать то, что линейным членом αN в
1.
Т. к. разложение F(N) начинается с квадратичного члена, то F(N)/αN → 0 при N → 0, откуда следует, что при небольшой численности рост описывается линейным уравнением Мальтуса, является экспоненциальным и не зависит в первом приближении от взаимодействий между членами популяции. Т. е. получается правильная асимптотика.2.
Если отбросить линейный член αN, оставить только F(N) и считать, например, что F(N) = βiNi, βj = 0, j ≠ i, т. е. все члены разложения кроме одного равны нулю, как в уравнении Капицы, то получаем причинный закон степенного роста, согласно которому, как мы показали ранее, не растет ни одна популяция в природе. Если же в разложении F(N) присутствует более одного члена, а функция F(N) является монотонной, что соответствует любому реально возможному росту, то и в этом случае можно показать, что рост будет аналогичен степенному со всеми теми противоречиями, которые были рассмотрены нами ранее.