Модель логистического роста, основанная на предположении об
В этом ее несомненное достоинство. Но берется она, по сути, с потолка, т. к. уравнение (9) никак не вытекает из каких-либо особенностей размножения и гибели организмов. Этим она отличается от модели естественного экспоненциального роста, которая полностью прозрачна и не содержит никаких искусственных допущений. Поэтому реальная S-образная кривая роста популяции может сильно отличаться от логистической кривой.
«Предположение о линейной зависимости скорости роста популяции от ее плотности (основное условие логистического роста) Ф. Смит (Smith, 1963) проверил экспериментально на лабораторной популяции рачка Daphnia magna. Увеличивая объем сосуда с питательной средой, в котором содержались дафнии, Ф. Смит в течение некоторого времени поддерживал плотность растущей популяции на одном уровне.
Определив таким образом при разных плотностях значения удельной скорости популяционного роста, Ф. Смит построил по экспериментальным данным график, отражающий взаимосвязь данных величин. В соответствии с логистической моделью ожидалось, что этот график будет прямой линией, однако на самом деле получилась кривая, т. е. при низкой плотности популяция росла быстрее, чем это было бы при линейной зависимости, а при высокой – медленнее. Учтя эти данные и соответствующим образом модифицировав уравнение, Смит добился гораздо лучшего соответствия модели результатам эксперимента» [26].
В случае, когда нелинейный член F(N) = – N2
f(N) представляет собой монотонную функцию можно говорить об обобщенном логистическом росте (9A). Такое уравнение называют иногда обобщенным уравнением роста Ричардса (Richards, Карманова, Иванилова, 1971) и используют для описания роста как отдельных организмов, так и популяций в целом. [26]Какими качествами должны обладать организмы, чтобы рост их популяций описывался логистической или обобщенной логистической моделью?
1.
Во-первых, при возрастании численности (плотности) популяции должна возрастать вероятность их гибели и/или снижаться вероятность оставить потомство.2.
Во-вторых, реакция этих организмов на возрастание численности (плотности), проявляющаяся в снижении рождаемости и/или увеличении смертности, должна осуществляться без запаздывания, иначе говоря, она должна быть значительно меньше времени жизни отдельной особи этой популяции, т. е. быть практически мгновенной.Ни один из реально существующих видов таким свойством (по крайней мере вторым свойством), очевидно, не обладает. И лучше всего такой модели соответствует рост простейших или бактерий, размножающихся в условиях конкуренции за пищевые ресурсы в среде, объем которой ограничен.
Суть логистической модели заключается в том, что на начальной стадии роста, при малой численности, в правой части уравнения роста доминирует линейный член, и рост является экспоненциальным.
По мере увеличения численности постепенно начинает сказываться присутствие квадратичного (нелинейного) члена, и численность устойчивым образом устремляется к некоторому предельному значению, величина которого зависит как от линейного, так и от нелинейного члена. Здесь важно то, что линейным членом в правой части логистического уравнения, в отличие от нелинейного, пренебречь нельзя ни на каком этапе роста.
Если поменять знак второго члена логистического уравнения с минуса на плюс получим некий антипод логистического роста, когда взаимодействия между членами популяции способствуют, а не препятствуют приросту ее численности.