Он понимал, какую кашу заваривает: «Я прекрасно осознаю, что, принимая такое действие, я противопоставляю себя распространенным в математике взглядам на бесконечность и нынешним мнениям относительно природы чисел». И получил то, чего ожидал – враждебное отношение, особенно со стороны Леопольда Кронекера. «Бог создал целые числа, остальное – творение Человека», заявил последний.
Но в наши дни большинство людей полагает, что целые числа – это тоже творение Человека.
Зачем вводить новый знак (да еще и из еврейского алфавита)? Если бы, по мнению Кантора, существовала лишь одна бесконечность, он мог бы, как все, просто называть ее «бесконечностью» и в качестве ее символа использовать лежащую на боку восьмерку. Но под своим углом зрения он быстро заметил, что могут существовать и другие бесконечности и дал им правильные имена: алеф-один, алеф-два, алеф-три и так далее.
Как это так –
Если
Подобно Кантору, мы начинаем праздно размышлять о бесконечно-плексе. Но давайте выразимся точнее: как нам быть алеф-нуль-плексом? Чему равен 10алеф-нуль?
Как ни странно, на этот вопрос существует вполне разумный ответ. Это мощность множества всех действительных чисел – то есть всех чисел, которые можно представить в виде бесконечно длинной десятичной дроби. Вспомните Птагонала, философа из Эфеба, которому, как утверждается, принадлежит высказывание: «…существует отношение длины окружности к диаметру… Оно должно быть равно трем. Но так ли это на самом деле? Нет. Три целых, один, четыре, один и так далее и так далее. И все один и четыре, один и четыре. От такого можно в стельку напиться»[50]
. Конечно, это намек на известнейшее из действительных чисел, для точной записи которого необходимо указать бесконечное число десятичных знаков, – π («пи»). С точностью до десятой π равно 3,1. До сотой – 3,14. До тысячной – 3,141. И так далее до бесконечности.Кроме π, есть и огромное количество других действительных чисел. Насколько велико их фазовое пространство?
Рассмотрим десятичные знаки. Если мы ограничимся одной цифрой после запятой, получится 10 возможностей: любая из цифр 0, 1, 2… 9. Ограничимся двумя – 100 возможностей: от 00 до 99. Тремя – 1000 возможностей: от 000 до 999.
Закономерность очевидна. Если мы ограничимся
Если эти знаки будут продолжаться «вечно», то необходимо уточнить, о какой именно «вечности» идет речь. И ответом будет «алеф-нуль Кантора», потому что в нем есть первая цифра после запятой, вторая, третья… и их можно соотнести с целыми числами. И если мы примем
Это все очень хорошо, но если все бесконечности должны быть равны, то разве алеф-нуль-плекс не будет неразличим? Нет. Они не равны. Кантор доказал, что нельзя соотнести действительные числа с целыми. Отсюда следует, что алеф-нуль-плекс больше, чем алеф-нуль.
Но он пошел дальше. Гораздо дальше. Он доказал[52]
, что еслиПеречень бесконечностей Кантора не имеет конца. Такой «гипербесконечности», которая была бы больше остальных, просто нет в природе.
Представление о бесконечности как о «самом большом возможном числе» здесь сталкивается с некоторыми трудностями. А
Если взять любую бесконечную мощность алеф-
Математика основывается на том, что лучше сначала построить дом, а потом уже фундамент. Тогда этот фундамент можно будет убрать, если он вам не понравится, и заменить другим. И при этом не задеть самого дома.