Отель Гильберта приучает нас быть осторожными, когда мы делаем предположения о бесконечности. Она может вести себя не так, как обычные конечные числа. Если добавить к ней единицу, она не станет больше. Если умножить бесконечность на бесконечность, она
Так все и думали – но это справедливо только для потенциальных бесконечностей в виде последовательностей конечного числа шагов, которые теоретически могут продолжаться сколько угодно. Однако в 1880 году Кантор задумался об актуальных бесконечностях и открыл настоящий ящик Пандоры с еще бóльшими бесконечностями. Он назвал их
О счете.
Мы обычно знакомим детей с числами, когда учим их считать. Они узнают, что числа – это «то, что мы используем для счета». Например, «семь» – это число, на котором мы остановимся в воскресенье, если начнем с «одного» в понедельник. Значит, количество дней в неделе равно семи. Но что это за зверь такой – семь? Слово? Нет, ведь вместо него можно использовать знак «7». Знак? Но ведь есть же слово… К тому же на японском знак «7» выглядит по-другому. Там что
Кантор решил сделать из нужды добродетель и объявил, что число – это что-то, связанное с множеством или совокупностью предметов. Множество можно составить из любой совокупности любых предметов. Интуитивно вы понимаете, что число, которое получится у вас при подсчете, показывает, сколько предметов содержится во множестве. Множество дней недели обозначено числом «семь». Удивительное свойство подхода Кантора заключается вот в чем: вы можете,
Понедельник – Красный
Вторник – Оранжевый
Среда – Желтый
Четверг – Зеленый
Пятница – Синий
Суббота – Фиолетовый[48]
Воскресенье – Октариновый
Порядок, в котором они перечислены, не имеет значения. Но нельзя связывать вторник одновременно с фиолетовым и зеленым или зеленый одновременно со вторником и воскресеньем. Как и вычеркивать предметы из множества.
А если вы попытаетесь сопоставить дни недели со слонами, держащими Диск, у вас ничего не выйдет:
Понедельник – Берилия
Вторник – Тубул
Среда – Великий Т'Фон
Четверг – Джеракин
Пятница –?
Точнее, у вас закончатся слоны. Даже легендарный пятый элефант не позволит вам продвинуться дальше пятницы.
Так в чем же разница? Ну, в неделе семь дней, а в радуге семь цветов, поэтому они легко соотносятся друг с другом. Но слонов всего четыре (раньше, возможно, было пять), а четыре или пять нельзя соотнести с семью.
Глубинный философский смысл этой задачи состоит в том, что вам не нужно знать о
Итак, пока ничего нового. Но «соотнесение» имеет смысл не только для конечных, но и для бесконечных множеств. Можно соотнести четные числа со всеми числами:
2 1
4 2
6 3
8 4
10 5
…
и так далее. Соотнесения таких множеств объясняют случай отеля Гильберта. Именно отсюда Гильберт почерпнул свою идею (сначала крыша, а потом фундамент, помните?).
Какова мощность множества всех чисел (и, соответственно, любого соотносящегося с ним числа)? Традиционно ее называют «бесконечностью». Кантор в 1883 году осмотрительно предпочел название, которое вызывало меньше ассоциаций, – «алеф», первой буквы еврейского алфавита. И добавил нолик – очень скоро вы узнаете, почему, – получив «алеф-нуль».