Читаем Наука Плоского мира. Книга 3. Часы Дарвина полностью

10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001


Достаточно добавить 1. Еще более впечатляющим образом можно придумать число, большее гуглплекса (идея названия тоже принадлежит племяннику), который представляет собой 1 с гуглом нулей. Не пытайтесь записать его: вселенная для этого слишком мала (если только вы не станете писать шрифтом субатомного размера), а время ее существования слишком коротко, не говоря уже о продолжительности вашей жизни.

Гуглплекс – пусть и чрезвычайно огромное, но совершенно определенное число. В нем нет никакой неясности. И он, несомненно, не равен бесконечности (достаточно добавить 1). Тем не менее он достаточно велик для большинства задач, включая те, что возникают в астрономии. Каснер и Ньюман заметили, что «как только люди начинают говорить о больших числах, они теряют контроль. Думая, что ноль это ничто, они добавляют к числу много нулей, считая, будто почти ничего этим не меняют». Такая фраза вполне могла бы принадлежать самому Наверну Чудакулли. Они также писали, что в конце 1940-х в одной известной научной статье сообщалось, будто для начала ледникового периода нужен миллиард в миллиардной степени снежных кристаллов. «Это, – продолжали они, – весьма удивительно и крайне глупо». Миллиард в миллиардной степени это 1 с девятью миллиардами нулей. Более разумное в данном случае число – это 1 с 30 нулями, что невообразимо меньше, но все равно больше, чем на банковском счету Билла Гейтса.

Какой бы ни была бесконечность, это не обычное число, которое можно сосчитать. Если бы самым большим возможным числом было, скажем, n сиксиллиардов, то все равно n сиксиллиардов плюс один было бы больше. И даже если бы это число было более сложным, например, n сиксиллиардов два миллиона девятьсот шестьдесят четыре тысячи семьсот пятьдесят восемь… то что, если мы назовем n сиксиллиардов два миллиона девятьсот шестьдесят четыре тысячи семьсот пятьдесят девять?

К любому числу можно добавить единицу, и вы получите число, которое будет (не намного, но отличимо) больше его.

Счет может остановиться, только если у вас закончится воздух в легких, но оно не может остановиться из-за того, что закончатся числа. Хотя у бессмертного (или почти бессмертного), пожалуй, могут закончиться вселенные, в которых он попытается записать числа, или время, чтобы их произнести.

Если коротко, множество чисел бесконечно.

Замечательнее всего в этом утверждении то, что оно не подразумевает существования числа под названием «бесконечность», которое больше любого другого числа. Совсем наоборот: вся суть в том, что такого числа, которое было бы больше любого другого, не существует. И хотя счет вы в принципе можете вести бесконечно, при каждом отдельном шаге вы достигаете конечных чисел. «Конечный» здесь означает, что до него можно досчитать и окончить счет.

Как сказали бы философы, счет – это образец потенциальной бесконечности. Это процесс, который может длиться вечно (или, по крайней мере, так кажется нашему наивному разуму, воспринимающему образы), но никогда этой «вечности» не достигает.


Развитие новых математических идей обычно следует некоторым закономерностям. Если бы математики строили дом, они бы начали со стен первого этажа, подвесив их в воздухе в футе над гидроизоляционным слоем… или тем уровнем, где он должен находиться. В доме не будет ни окон, ни дверей, только проемы соответствующего размера. Ко времени пристройки второго этажа качество кладки заметно улучшится, внутренние поверхности стен будут оштукатурены, двери и окна займут свои места, а пол станет достаточно прочным, чтобы по нему можно было ходить. Третий этаж будет просторным и совершенным, весь устланный коврами, заставленный огромным количеством мебели с интересным, но неподходящим дизайном, и с шестью видами обоев в каждой комнате… Чердак, наоборот, – скромным, но элегантным – минималистичный дизайн, ничего лишнего и все по делу. Тогда – и только тогда – они спустятся на нулевую отметку, чтобы выкопать фундамент, залить его бетоном, сделать гидроизоляцию и продлить стены вниз, пока те не встретятся с основанием.

В итоге получится вполне устойчивый дом. Но в процессе строительства бóльшую часть времени он будет выглядеть как нечто неправдоподобное. Но строители, увлеченные возведением стен к небесам и внутренним оформлением комнат, будут слишком заняты, чтобы это заметить, пока инспектора по строительству не ткнут их носом в недостатки конструкции.

Перейти на страницу:

Все книги серии Плоский мир

Похожие книги