Задача 132.
Задача 133.
Задача не решается сведением к единице, так как, отвечая на вопрос, сколько стоит один метр, придется делить 200 на 3. Так что лучше решать задачу составлением пропорции. Полезно для этого записать кратко задачу так:
3 м 200 руб.
4,5 м х руб.
Теперь пропорция рождается автоматически.
Если все же учитель не хочет составлять пропорцию, он может предложить такое решение:
1) Сколько стоят 9 м? 200 · 3 = 600 (руб.).
2) Сколько стоят 4,5 м? 600 : 2 = 300 (руб.).
Возможно и иное решение, так как 4,5 м = 3 м + 1,5 м, а 1,5 м стоят 200 : 2 = 100 (руб.).
Задача 134.
Расставим буквы в пустые клетки таблицы:
Так как по условию 6 + a + b = a + b + с, то с = 6. Таким же образом равна 6 каждая из букв, стоящая через две клетки после с. Это f, h, k. Так же доказывается, что каждая буква стоящая через две клетки до и после 4, равна 4. Это е, b, j, m. Наконец, из условия 6 + а + b = 15 получаем, что а = 5. То же значение имеют все буквы, стоящие через две клетки после а.
Задача 135.
Так как А · А оканчивается на E, не равное A, то A не может равняться 0, 1, 5 и 6. Так как при этом Е не равно 9, то А не может равняться 3 и 7. Значит, А может равняться только 2, 4, 8 или 9. Но А · В оканчивается на В, поэтому А не равно 2, не равно 4 и не равно 8. Значит, А = 9 и В = 5. После этого выясняется, что Е = 1, Ч = 2. Остается найти Д. Учитывая, что Д должно быть не больше 4, проверяем две оставшиеся возможности: Д = 3 и Д = 4.
Задача 136.
Нулей столько, сколько имеется пар простых множителей 2 и 5. Двоек очень много — они присутствуют во всех четных числах. А пятерок меньше — они имеются только в числах, делящихся на 5. Таких чисел двадцать: 5, 10, 15, 20, 25…, 95, 100. Но в четырех из них по две пятерки: 25 = 5 · 5, 50 = 2 · 5 · 5, 75 = 3 · 5 · 5, 100 = 2 · 2 · 5 · 5. Так что всего пятерок в произведении 20 + 4 = 24.
Задача 137.
Соединим томики Маяковского и Пастернака в одну связку. Поставив на первое место томик Пушкина, на следующие три места мы можем поставить в любом порядке томик Лермонтова, томик Некрасова и связку. Это можно сделать шестью способами. А так как томики Маяковского и Пастернака можно соединить двумя способами, то способов расставить книги вдвое больше.
Задача 138.
Если бы события происходили в одной плоскости, ответ был бы прост: ползти по прямой. Поэтому нужно распрямить куб и определить возможный путь. В случае на нашем рисунке это путь АСВ:
Задача 139.
Выигрывает тот, кто возьмет 35-й шарик, следовательно, тот, кто возьмет 29-й шарик, 23-й, 19-й, 13-й, 7-й, 2-й шарик.