К любой паре брюк можно подобрать любой из двух пиджаков и любой из двух галстуков. То есть к любой паре брюк можно подобрать четыре варианта «пиджак + галстук». А так как пар брюк имеется 3, то всего нарядных костюмов 12. Желательно начертить на доске такое дерево возможностей:
Задача 2.
Разделим монеты на три группы: 9, 9 и 2 монеты. Первое взвешивание — сравниваем вес первых двух групп. Если они одинаковы, то фальшивая монета среди двух монет третьей группы, и мы вторым взвешиванием сравниваем их между собой. Та, которая легче, — фальшивая. Если в первом взвешивании одна из групп окажется легче, то фальшивая монета в ней. Делим эту группу на три группы по три монеты. Вторым взвешиванием устанавливаем, которая из этих трех групп легче, а третьим взвешиванием находим легкую монету в этой тройке.
Задача 3.
Возможно такое решение: все четные члены последовательности равны 6, а все нечетные получаются прибавлением числа 2 к предыдущему нечетному члену.
Задача 4.
Достаточно записать пример в столбик, и решение будет очевидным.
Задача 5.
Это задача на тему поговорки «Ложкой дегтя можно испортить бочку меда». Но интересна она не этим, а тем, что даже взрослые люди часто дают на нее неверный ответ: дегтя в меде больше, так как дегтя перелили целую ложку, а меда перелили не целую ложку (ложку, в которой был также и деготь). После того, как будут выслушаны разные ответы, нужно дать такое решение задачи.
В результате переливаний в бочке с дегтем оказалось х мл меда. Так как всего в ней 50 ООО мл, то дегтя в ней (50 000 — х) мл. Во второй бочке осталось поэтому (50 000 — х) мл меда. Значит, дегтя в ней тоже х мл.
Надо сопроводить решение таким рисунком:
Довод в пользу неверного ответа, который казался таким убедительным, теперь легко опровергнуть: во время второго переливания часть дегтя вернули обратно.
Задача 6.
Суть игры в том, чтобы уравнивать число камней в кучах. Если один игрок уравняет их, то другой обязательно нарушит это равенство, и т. д. Число камней все время убывает, и когда-нибудь игрок, уравнивающий число камней в кучах, доведет это равенство до 0–0, то есть выиграет.
Отметим, что очень желательно организовать эту игру. Камни для этого иметь необязательно. Можно просто написать на доске:
В первом случае надо начинать первым, забирая из второй кучи 8 камней (уравнивая кучи). Во втором случае надо предоставить первый ход противнику и каждым своим ходом уравнивать кучи.
Задача 7.
Как мы писали в аналогичной книге для третьеклассников, шифр Юлия Цезаря состоит в следующем. Алфавит пишется по кругу (за буквой