(число кукол Милы) — (число кукол Лены) = 12.
Получилось уравнение с двумя неизвестными. Выразим эти неизвестные через один и тот же х. Обозначать через х ту величину, о которой спрашивается в задаче, было бы неудобно: у Милы кукол больше, чем у Лены, и пришлось бы х делить на 4. Поэтому обозначим через х число кукол Лены: х — число кукол у Лены. Получается, что
(число кукол Милы) — х = 12.
Теперь уже многие догадаются, что число кукол Милы равно 4х, и уравнение примет вид:
4х — х = 12.
Задача 23.
Задача 24.
Последовательность решения может быть такой:
Задача 25.
Начинать можно из точки, в которой сходится нечетное число путей.
Задача 26.
Надо попросить детей придумать текст задачи на эту тему.
Задача 27.
Конечно, можно решить эту задачу с помощью уравнения:
Но гораздо лучше эту задачу оживить таким, например, рассказом.
Пятеро плотников и один столяр выполнили работу по остеклению большого балкона. Когда они показали работу хозяину, он остался очень доволен и дал им за это деньги. Работники сосчитали деньги и увидели, что сумма делится на шесть. Они разделили деньги поровну. Но тут один из плотников сказал: «Так несправедливо. Столяр выполнил более важную работу, чем мы, плотники. Так что нужно и денег дать ему больше. Дадим ему больше на 30 рублей». Все согласились. Плотники собрали 30 рублей и отдали их столяру. После этого нужно попросить пересказать всю эту историю. А затем пусть дети ответят на вопросы:
1) Можно ли считать, что вначале столяр и плотники получили средний заработок? (Да, так как вначале деньги разделили поровну)
2) Сколько денег собрали затем с каждого плотника?
(30 руб. : 5 = 6 руб.)
3) Сколько денег имел каждый член бригады первоначально?
(200 руб. + 6 руб. = 206 руб.)
4) Сколько денег получил столяр в результате? (206 р + 30 р — 236 р)
Задача 28.
Из точки К в точку А ведет один путь. Точно то же можно сказать о точках Б, В, Г, Д и Е. В точку Ж ведут из К два пути: один через точку А, другой — через Д. В точку Н ведут 3 пути, один — через точку Е и два — через точку Ж. В точку З ведут три пути, в точку О — 6 путей, в точку И — 4 пути, в точку М — 5 путей, в точку П — 10 путей. В точку С ведет 15 путей.
Задача 29.
Задача 30.
Задача решается точно так же, как и задача 27. Ее можно использовать, чтобы убедиться, что дети поняли решение задачи 27.
31 - 40
Задача 31.
Заменяем каждую букву той, которая идет за ней второй по алфавиту.