Задача 162.
Паровоз продвинулся за 2 минуты на 1750 м. Разделив этот путь на время движения, получим скорость.
Задача 163.
(385 — __ + 8) · (__: 385 + 9).
В первой скобке пропущенное число должно быть не больше 385, а во второй скобке — не меньше 385.
Задача 164.
Это может быть, если разрыв между прибытием трамваев на остановку не одинаков.
Например, представим себе такое расписание
При таком расписании Коля будет чаще попадать на трамвай № 1.
Задача 165.
За 10 минут произошло следующее. Паровоз короткого поезда проехал мимо длинного поезда, а затем весь короткий поезд проехал мимо паровоза длинного поезда, то есть паровоз короткого поезда проехал суммарную длину обоих поездов со скоростью, равной разности скоростей этих поездов. Поэтому можно вначале найти суммарную длину обоих поездов, затем разделить ее на время (на 10 минут), а затем к полученной скорости прибавить скорость второго поезда.
Задача 166.
Задача 167.
За 1 минуту происходит следующее. Паровоз первого поезда проезжает мимо второго поезда, а затем весь первый поезд проезжает мимо паровоза второго поезда, то есть паровоз первого поезда проезжает суммарную длину обоих поездов со скоростью, равной разности скоростей этих поездов. Поэтому можно вначале найти суммарную длину обоих поездов (1500 м), затем разделить ее на время (на 1 минуту), а затем от полученной скорости 1500 м/мин отнять скорость второго поезда (60 км/час, или 1000 м/мин).
Задача 168.
(742 :__ + 17) · (__ — 742 + 6).
В первой скобке пропущенное число должно быть не больше 742, а во второй скобке — не меньше 742.
Задача 169.
Задача 170.
Это задача с длинным решением. Ее можно предложить лишь немногим школьникам. Тем не менее некоторым из них она может оказаться интересной. Построим турнирную таблицу:
Всего в турнире сыграно 6 · 5 : 2 = 15 партий, значит, всеми игроками набрано 15 очков. Так как Андреев, занявший 1 место, имеет 4 очка, то остальные игроки могли набрать следующее число очков: