АБСОЛЮТНАЯ ГЕОМЕТРИЯ
Абсолютная геометрия — это часть геометрии, которая выводится из первых четырех постулатов Евклида. Она называется абсолютной, так как является общей частью евклидовой и неевклидовой геометрий. Как мы уже показали, отличие между ними заключается лишь в пятом постулате о параллельности прямых.
Большое историческое значение имеет четырехугольник Саккери, рассмотренный Джироламо Саккери, и четырехугольник Ламберта, рассмотренный немецким математиком Иоганном Ламбертом. Они использовались для доказательства пятого постулата, но безуспешно. Саккери пытался показать, что отрицание пятого постулата ведет к противоречию, и тем самым доказать его. Однако он совершил ошибку, посчитав некоторые результаты неверными лишь на основании того, что они противоречили интуиции.
Ламберт, напротив, в посмертно изданной книге «Теория параллельных линий» (1766) приводит похожие рассуждения, что и Саккери, но не содержащие ошибок. По-видимому, он представлял, что можно сформировать геометрию без пятого постулата, так как писал: «Я склоняюсь к мысли, что гипотеза острого угла верна на некоторой сфере воображаемого радиуса». Этот немецкий математик также открыл несколько интересных формул, описывающих треугольники гиперболической геометрии, показав, что сумма углов в таких треугольниках всегда меньше 180°. По формуле Ламберта для этих треугольников справедливо следующее соотношение:
(π
— (α + β + Y)) = CSαβγ,где
α
+ β + Y — сумма углов треугольника (выраженная в радианах);С
— положительный коэффициент пропорциональности, связанный с неизменной кривизной гиперболического пространства, в котором находится треугольник;S
αβγ — площадь треугольника.* * *
Использование нового постулата привело к созданию новой совокупности теорем и выводов, которую стали называть гиперболической геометрией. Лобачевский и Бойяи пришли к необычным выводам: через одну точку проходит бесконечно много прямых, параллельных данной; сумма углов треугольника меньше 180° для двух данных параллельных прямых существует третья прямая, перпендикулярная одной из них и параллельная другой, и так далее.
Все это противоречило интуиции: подобную ситуацию нельзя было представить, не переосмыслив понятия прямой, плоскости и другие. Тем не менее с точки зрения логики новая геометрия была абсолютно корректной. Это вызвало крупный кризис в математике XIX в., который наложился на другие противоречия той эпохи. Как бы то ни было, в трудах Лобачевского и Бойяи было окончательно показано, что постулат о параллельности прямых не связан с остальными и что Евклид совершенно справедливо включил его в число постулатов, так как его нельзя логически вывести из предыдущих.
Немецкий математик Август Мёбиус (1790–1868), современник Бойяи и Лобачевского, известен благодаря ленте, носящей его имя. Чтобы сделать ленту Мёбиуса, достаточно взять полоску бумаги и соединить ее концы, повернув один из них на 180°. Если мы «пройдем» вдоль полученной поверхности, то обойдем всю ленту целиком и попадем в исходную точку, не переходя на «другую сторону», которой фактически не существует. Если мы разрежем ленту вдоль по линии, равноудаленной от краев, то получим не две ленты Мёбиуса, а одну в два раза большей длины.