Фрактальная геометрия и хаос тесно связаны друг с другом, и понять один из этих разделов математики без другого непросто. Фрактальная геометрия изучает самоподобные и парадоксальные фигуры, а теория хаоса изучает поведение непредсказуемых процессов и занимается поисками упорядоченности в них. Оба этих раздела математики, которые бурно развиваются в последние 20 лет, связаны между собой: среди хаоса формируются фракталы, которые можно использовать в попытках дать определение хаосу. Где же находится точка пересечения теории хаоса и фрактальной геометрии? Теория хаоса возникла в так называемой теории динамических систем. Любая динамическая система состоит из двух частей: состояния (обычно выражается через координаты) и динамики (изменения состояния с течением времени). Эволюцию динамической системы можно представить движением точек в координатном пространстве, каждой точке которого соответствует некое состояние системы. Это пространство называется фазовым пространством. Если эволюция системы подчиняется некоторому закону или законам (даже если их природа неизвестна), они неизменны с течением времени и последующее состояние можно описать через предыдущее, то речь идет о так называемой детерминированной динамической системе. Определение «детерминированная» означает, что эволюцию системы можно предсказать.
Один из самых удивительных результатов современной физики заключается в том, что предсказать поведение многих детерминированных динамических систем через длительные промежутки времени невозможно, так как на каждой итерации накапливаются ошибки. Подобные детерминированные динамические системы, которые очень чувствительны к относительно небольшим изменениям, называются хаотическими. Столь высокая чувствительность означает, что две возможные траектории перемещения точек, которые изначально расположены очень близко друг от друга, с течением времени могут очень сильно разойтись. То, что подобным поведением отличаются системы с большим количеством переменных, было известно давно. Однако, что удивительно, этой же особенностью обладают и очень простые системы.
В 1776 г. французский математик Пьер Симон Лаплас категорично заявил, что если бы ему были известны скорость и положение всех частиц во Вселенной в определенный момент времени, то он смог бы с идеальной точностью узнать прошлое и предсказать будущее. Свыше 100 лет это утверждение казалось верным. Из него следует, что свободы воли не существует, так как все детерминировано, по меньшей мере в теории. Такое видение мира позднее стало называться детерминизмом Лапласа. Применительно к науке оно означает, что если нам известны законы, которым подчиняется некое явление, известны начальные условия и даны средства расчетов, то мы можем с полной уверенностью предсказать будущее состояние изучаемой системы.
В конце XIX в. Пуанкаре задался вопросом, будет ли Солнечная система неизменно стабильной. Этот французский математик первым задумался над вероятностью того, что поведение системы существенно зависит от начальных условий:
«Поведение системы можно проанализировать, повторяя один и тот же эксперимент с одинаковыми начальными значениями в одинаковых условиях, чтобы было возможным получить одинаковые результаты. Это приводит нас к принципу причинности. Если одни и те же причины ведут к одним и тем же следствиям, речь идет о сильной причинности. Однако в большинстве случаев возможно достичь лишь схожих начальных условий, поэтому говорить о сильной причинности нельзя. Схожие причины имеют схожие следствия».
В 1903 г. Пуанкаре так охарактеризовал случайность: «Случайность служит мерой нашего невежества».
Наука XX в. засвидетельствовала крушение детерминизма Лапласа, вызванное двумя разными причинами. Первая вытекает из принципа неопределенности Гейзенберга в квантовой механике. Согласно ему существует фундаментальное ограничение точности, с которой можно измерить положение и скорость частицы. Однако непредсказуемость поведения системы в целом (и вторая причина, опровергающая детерминизм Лапласа) вызвана не принципом Гейзенберга.