Читаем Новый взгляд на мир [Фрактальная геометрия] (Мир математики. т.10.) полностью

САМООПРЕДЕЛЯЕМЫЕ ФРАКТАЛЫ

Существуют различные классификации фракталов по их свойствам. В зависимости от степени самоподобия все фракталы можно разделить на пять больших категорий:

1. Самоповторяющиеся. Эта категория накладывает наиболее строгие ограничения, так как необходимо, чтобы фрактал не изменялся в зависимости от масштаба наблюдений. К этой группе относятся канторово множество, треугольник Серпинского, кривая Пеано, снежинка Коха, кривая дракона, губка Менгера и так далее.

2. Линейные — те, которые строятся с помощью аффинных преобразований. Фракталы этого типа содержат уменьшенные копии всей фигуры целиком, но видоизмененные с помощью линейных функций, как, например, лист папоротника Барнсли.

3. Самоподобные. Фракталы этого типа содержат уменьшенные копии фигуры целиком, видоизмененные с помощью нелинейных функций, как, например, множество Жюлиа.

4. Квазисамоподобные. Фракталы этой группы более или менее идентичны в различном масштабе. Такие фракталы содержат уменьшенные и деформированные копии всей фигуры целиком. Как правило, к этому типу относятся фракталы, определенные с помощью рекурсивных процедур, как, например, множество Мандельброта или фрактал Ляпунова.

5. Статистически самоподобные. Эти фракталы обладают меньшим уровнем самоподобия. В них присутствует какая-либо числовая или статистическая метрика, которая не изменяется в зависимости от масштаба. Сюда относятся случайные фракталы, например траектория броуновского движения, полет Леви, фрактальные пейзажи и броуновские деревья.


Природа не фрактальна


В книгах, посвященных фракталам, часто можно встретить утверждения вида «в природе существует множество фрактальных объектов». В действительности это не совсем так. Когда мы говорим, что, например, граница, дерево или венозная сеть являются фракталами, в действительности имеется в виду, что для них существуют фрактальные модели достаточно высокой точности. В реальном мире не существует фракталов, как не существует прямых или окружностей.

Однако математические модели, описывающие реальность, помогают нам лучше понять ее. Подобно тому как теория относительности описывает орбиту Меркурия точнее, чем ньютоновская механика, фрактальная геометрия описывает форму некоторых объектов точнее, чем геометрия Евклида. Возможно, она точнее описывает и динамику реальных процессов.

Множество Мандельброта содержит бесконечно много деталей, и его рассмотрению в различных масштабах можно посвятить всю жизнь. Точно так же мы можем изучать и реальный мир, начав с молекул, затем перейдя к атомам, а от них — к нейтронам и другим субатомным частицам. Возможно ли, что в один прекрасный день мы достигнем предела? Или же, подобно множеству Мандельброта, предела не существует и здесь? Этого никто не знает.


Избавляемся от мечты о детерминизме

В словарях хаос определяется как «беспорядочная материя, неорганизованная стихия», существовавшая в мировом пространстве до образования известного человеку мира. Однако у ученых есть что добавить к этому определению.

Математическая теория хаоса является частью точной науки. В ней нет места неточностям и неопределенности. Разумеется, название теории хаоса восходит к традиционному смыслу этого слова, но хаос в математике — это не волк, а скорее овца в волчьей шкуре: он открывает нам дорогу в мир хаотичных структур и систем, которыми мы со временем научимся управлять.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное