Несмотря на все вышесказанное, когда нужно провести определенные границы, а территории недостаточно, то земельным участкам, как правило, придают форму прямоугольников или четырехугольников, как, например, при межевании поля перед
Кажется, что четырехугольники использовались всегда. Действительно, это одна из наиболее часто применяемых фигур наряду с кругом, спиралью и крестом. Некоторые исследователи пытались найти доказательства тому, что знания геометрии являются врожденными и не требуют знания языка или культуры. Это было подтверждено на примере племени мундуруку, живущего в Амазонии. Племя живет изолированно от нашей цивилизации на протяжении четырех сотен лет, со времени прибытия в Южную Америку европейских завоевателей. Знания геометрии, которыми владеют индейцы этого племени, доказывают, что человек обладает геометрической интуицией, которая не зависит от обучения, умения работать с картами и графическими символами и даже от наличия геометрических терминов в языке. Это открытие произвело переворот в неврологии, антропологии, психологии и герменевтике: ведь раньше было невозможно определить, необходим ли язык для познания реального мира.
В ходе современных лингвистических исследований было обнаружено, что существуют универсальные общие для всех языков семантические элементы, а также базовые языковые универсалии, характерные для устной речи. Означает ли это, что помимо одинаковых элементов языка существуют геометрические или арифметические универсалии, единые для всех людей и не зависящие от приобретенных знаний? Являются ли эти знания врожденными, унаследованными? Заложены ли они в нас генетически подобно языковым универсалиям, как утверждает выдающийся американский лингвист и философ Ноам Хомский? В 1957 г. в возрасте всего 29 лет Хомский совершил переворот в теоретической лингвистике, опубликовав работу «Синтаксические структуры». Ранее считалось, что язык, подобно любым другим навыкам, приобретается через обучение. Хомский выдвинул идею о существовании «ментального органа» языка — части мозга, благодаря которой человек обучается языку и использует его практически интуитивно. Кроме этого, он доказал, что существуют общие абстрактные принципы грамматики, присущие каждому человеческому языку, и выдвинул гипотезу о существовании универсальной грамматики.
Примерно к 323 г. до н. э. слава греческой науки распространилась по всем государствам, покоренным Александром Македонским. Неудивительно, что египетский царь Птолемей I, создав в Александрии крупный культурный центр, привлек туда афинских ученых. Евклид был назначен главой математической школы.
Первым из философов упоминает об Евклиде Прокл, согласно которому Евклид родился приблизительно в 300 г. до н. э. Относительно точности этой даты имеются сомнения, но достоверно известно, что именно Евклид систематизировал математику того времени, дополнил некоторые труды и привел неопровержимые доказательства утверждений, недостаточно подробно изложенных его предшественниками. Он обобщил и систематизировал геометрию своего времени. До Евклида математика представляла собой набор разрозненных вычислений. Благодаря его усилиям она превратилась в совокупность взаимосвязанных систем.
Известно, что Евклид написал 12 книг, из которых до нас дошли лишь пять: «Начала геометрии», «Данные», «О делении», «Явления» и «Оптика». «Начала» стали обязательными к изучению во всех университетах и научных центрах в течение следующих двух тысяч лет[2]
. Считается, что существует около полутора тысяч изданий этой книги на греческом, арабском, латыни и других языках. До середины XX века эта книга была второй по числу проданных экземпляров, уступая лишь Библии.«Начала» — один из древнейших, красивейших и подробнейших научных трудов среди всех, что дошли до наших дней. Они состоят из тринадцати книг: шесть посвящены планиметрии, три — арифметике, одна — измерениям, три — основам стереометрии. Целью Евклида было изложить основы известной на тот момент математики без какого-либо практического применения. Его труд оказался столь совершенным, что был превзойден лишь в конце XIX века[3]
. В его теоремах все видели «истинные» подтверждения реальности, и никто не мог предположить, что возможна иная геометрия.