Читаем Observationes Domini Petri de Fermat полностью

Чтобы сделать это, надо, если найдено некоторое значение для X, положить вместо X в уравнении X + первоначально найденное значение для X. Таким путем получим бесконечно много решений, каждое из которых выводится из предыдущего и присоединяется к уже полученным.

Благодаря этому открытию мы можем получить бесконечно много треугольников с одинаковой площадью, чего, как кажется, не знал Диофант, как это явствует из задачи V8[58], в которой он ищет только три треугольника с одинановой площадью, чтобы решить последующую задачу относительно трех чисел, но эта задача, благодаря впервые сделанному нами открытию, может быть распространена на любое количество чисел до бесконечности.

OBSERVATIO D. P. F

XLIV (p. 333)

Ad idem commentarium.

Huic de duplicatis æqualitatibus tractatui multa possemus adiungere quæ nec veteres nec novi detexerunt. Sufficit nunc, ut methodi nostræ dignitatem et usum asseramus, ut quæstionem sequentem, quæ sane difficillima est resolvamus. Invenire triangulum rectangulum numero, cuius hypotenusa sit quadratus, et pariter summa laterum circa rectum[59]. Triangulum quæsitum repræsentant tres numeri sequentes 4687298610289. 4565486027761. 1061652293520. Formatur autem à duobus numeris sequentibus 2150905. 246792. Aliâ autem methodo sequentis quæcstionis solutionem deteximnus. Invenire triangulum rectangulum numero eâ conditione ut quadratum differentia laterum circa rectum minus duplo quadrati à minore latere conficiat quadraturn. Unum ex triangulis quæ huic quæstioni aptantur est id quod sequitur 1525. 1517. 156. formatur à numeris 2. 9. et 2.

Imo confidenter adiungimus duo triangula rectangula quæ iam exposuimus ad solutionem duarum propositarum quæstionum esse minima omnium in integris quæstionem adimplentium.

Methodus nostra hæc est. Quæratur quæstio proposita secundum methodum vulgarem, si non succedat solutio post absolutam operationem quia nempè valor numeri notâ defectus insignitur et ideo minor esse nihilo intelligitur, non tamen despondendum animum confidenter pronuntiamus (quæ oscitantia, ut loquitur Vieta[60], fuit et ipsius et veterum analystarum.) Sed iterum quæstionem tentemus et pro valore radicis ponamus 1N — numero quem sub signo defectus æquari radici incognitæ in prima operatione invenimus, prodibit nova haud dubiè æquatio quæ per veros numeros solutionem quæstionis repræsentabit. Et hac via superiores duas quæstiones alioquin difficillimas resolvinus, demonstravimus pariter et construximus numerum ex duobus cubis compositum in duos alios cubos dividi posse[61], sed hoc per iteratam ter aliquando operationem. Sæpius enim contingit ut veritas quæsita ad multiplices operationum iterationes solertem et industrium necessario adigat analystam ut facillimè experiendo deprehendes.


Перевод:

К этому исследованию о двойных равенствах мы можем многое добавить, что не было открыто ни древними, ни современными авторами. Однако для того, чтобы удостовериться в важности нашего метода и показать, как его применять, достаточно решить следующий очень трудный вопрос:

Найти прямоугольный треугольник в числах, гипотенуза которого была бы квадратом, а также и сумма сторон при прямом угле.

Искомый треугольник представлен следующими тремя числами:

4687298610289, 4565486027761, 1061652293520,

и он образован двумя числами: 2150905 и 246792.

С помощью другого метода мы открыли решение следующего вопроса:

Найти прямоугольный треугольник в числах при условии9 что квадрат разности сторон при прямом угле минус удвоенный квадрат меньшей из этих сторон составляет квадрат.

Один из треугольников, который удовлетворяет вопросу, будет следующим: 1525, 1517, 156, образованный числами 39 и 2.

Добавлю с уверенностью, что два треугольника, которые были приведены как решения двух предложенных задач, являются наименьшими в целых числах, которые удовлетворяют вопросам.

Наш метод таков. Ищут решение предложенного вопроса обычным методом. Если после окончания вычислений не добиваются успеха, потому что значение неизвестного числа получается со знаком недостатка и должно быть рассмотрено как меньшее нуля, то мы с уверенностью заявляем, что не следует падать духом (и стоять разиня рот, как говорит Виет и как делал и он сам и древние аналисты), но надо вновь вернуться к вопросу и подставить вместо неизвестного X число, найденное при первом вычислении и имеющее знак недостатка. Таким образом получится новое уравнение, которое приведет к решению в настоящих числах [т. е. положительных рациональных. — И. Б.].

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука