Читаем Observationes Domini Petri de Fermat полностью

An autem alius in integris quadratus præter ipsum 25. inveniatur qui adsumpto binario cubum faciat. id sanè difficilis primo obtutu videtur disquisitionis. Certissimâ tamen demonstratione probare possum nullum alium quadratum præter 25. in integris adiecto binario facere cubum. In fractis ex methodo Bacheti[54] supetunt infiniti, sed doctrinam de numeris integris quæ sanè pulcherrima et subtilissima est, nec Bachetus, nee alius quivis cuius scripta ad me pervenerint, hactenus calluit.


Перевод:

Можно ли отыскать среди целых чисел другой квадрат, кроме 25, который при прибавлении двух становился бы кубом? Конечно, с первого взгляда это кажется трудно исследовать. Однако мы можем доказать совершенно строго, что никакой целый квадрат, кроме 25, при прибавлении двух не дает куба. Для дробных чисел методом Баше можно найти бесконечно много таких квадратов, но наука о целых числах, которая, без сомнения, является прекраснейшей и наиболее изящной, не была до сих пор известна ни Баше, ни кому-либо другому, чьи труды дошли до меня.[55]

OBSERVATIO D. P. F

XLIII (p. 329)

Ad commentarium in quæstionem XXIV Libri VI.

QUÆSTIO DIOPHANTI. — Invenire triangulum roctangulum ut numerus circumferentiae sit cubus, et adscito areæ numero, faciat quadratum.

BACHETUS… Quoniam vero in his libris Diophantus diversimode utitur duplicata æqualitale, non abs re me facturumn arbitror, si omnes quos usurpat modos sigillatim recenseamn et unum in locum quæ sparsim a nobis adnotata sunt, collecta conjiciam, ut sic tota duplicatæ æqualitatis doctrina discentium animis firmius inhæreat. Nec solas Diophanti hypotheses afferemus, sed et alias plerumque exhibebimus, quibus varia hujusmodi æquationum symptomata declarentur, novamque insuper quam excogitavimus æquationis rationem, quamque ad quadragesimam quintam quarti explicavimus, alijs adjiciemus.


Ubi non suficiunt duplicatæ æqualitates vel διπλοισότητες, recurrendum ad τριπλοισότητας, seu triplicatas, æqualitates quæ est nostra inventio ad plurima problemata pulcherrima præviam facem præferens. Æquentur videlicet quadrato

1N + 4

2N + 4

5N + 4

oritur triplicata æqualitas cuius solutio per medium duplicatæ æqualitatis est in promptu. Si ponatur loco 1N. numerus una cum 4 quadratum conficiens v. g. [verbi gratia] 1Q + 4. N. fiet primus numerorum æquandorum quadrato 1Q + 4N. + 4 secundus igitur erit 2Q + 8N + 4. tertius 5Q + 20N + 4. primus autem ex constructione est quadratus, ergo debent æquari quadrato 2Q + 8N + 4 et 5Q + 20N + 4 et oritur duplicata æqualitas quæ unicam certè exhibebit solutionem[56], sed eâ exhibitâ prodibit rursum nova, et à secundci tertia deducetur, et in infinitum. Quod opus ita procedet ut invento valore 1N. rursus ponatulr 1N. esse 1N + numero qui primum ipsi 1N. inventus est æqualis. Hac enim viâ infinitæ prioribus solutionibus solutiones accedent et postrema semper derivabitur à proxime antecedenti. Huius inventionis beneficio infinita triangula eiusdem areæ possumus exhibere[57], quod ipsum videtur latuisse Diophantum, ut patet ex quæstione octava lib. 5. in quâ tria tantum triangula æqualis areæ investigat ut sequentem quæstionem in tribus numeris construat quæ ad infinitos ex iis quæ nos primi deteximus, recipit extensionem.


Перевод:

Там, где двойные равенства, или διπλοισότητες, недостаточны, следует прибегать к тройным равенствам, или τριπλοισότητας, которые открыты нами и которые ведут к решению множества прекрасных задач.

Пусть, например, надо приравнять квадратам 1X + 4, 2X + 4, 5X + 4, получаем тройное равенство, которое легко решить с помощью двойного равенства.

Если положить вместо X некоторое число, которое вместе с 4 дает квадрат, например X2 + 4X, то первое число, которое нужно приравнять квадрату, есть X2 + 4X + 4, второе 2X2 + 8X + 4, третье 5X2 + 20X + 4.

Первое число является квадратом по построению, значит, нужно приравнять квадратам

2X2 + 8X + 4 и 5Q + 20X + 4,

и получаем двойное равенство, из которого найдем, правда, только одно решение, но из него можно вывести новое решение, а из второго выведем третье и так до бесконечности.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука