Читаем Observationes Domini Petri de Fermat полностью

Ad quæstionem XXXII Libri V.

Invenire tres quadratos, ut compositus ex ipsorum quadratis faciat quadratum.


Cur autem non quærat duo quadratoquadratos quorum summa sit quadratus? Sanè hæc quæstio est impossibilis, ut nostra demonstrandi methodus potest haud dubie expedire.


Перевод:

Почему же он не ищет двух биквадратов, сумма которых была бы квадратом? Конечно, потому, что эта задача невозможна, как это с несомненностью показывает наш метод доказательства.

OBSERVATIO D. P. F

XXXIV (p. 287)

Ad commentarium in quæstionem III Libri VI.

QUÆSTIO DIOPHANTI. — Invenire triangulum rectangulum, ut areæ eius numerus, adsumens datum numerum, faciat quadratum. Esto datus 5.

BACHETUS… Quoniam vero hinc forte venit in mentem Francisco Viete[40] quæstionem applicari posse solis numeris qui e duobus quadratis componuntur, quia Diophantus in sua hypothesi sumpserat 5, e, duobus quadratis compositum; quamvis ex ipso ductu analyseos Diophanteæ satis constet ad quemlibet numerum extendi problema, ne quis tamen supersit dubitandi locus, placet id etiam experientia comprobare…


Error Vietæ indè haud dubiè oritur. Supposuit vir clarissimnus differentiam duorum quadratoquadratorum, ut 1qq. — 1. æquari areæ cui adijciendo quintuplum quadrati fiat quadratus, si 5. numerus datus dividatur in duos quadratos poterit inveniri quintuplum quadrati à quo demptâ unitate supersit quadratus.

Ponatur igitur latus quadrati quintuplicandi esse 1.N. + 1. aut alius quivis numerorum numerus + 1. quintuplum quadrati illius erit 5Q + 10.N. + 5 cui si adiicias aream 1QQ — 1 fiet 1QQ + 5Q + 10.N + 4. quæ summa debet æquari quadrato, hoc autem non est operosum. Cum numerus unitatum ex hypothesi adjectâ problemati, sit quadratus. Non vidit Vieta quæstionem perinde resolvi posse si loco 1QQ — 1 sumpsisset pro areâ 1 — 1QQ. eo enim deducenda statirn quæstio ut datus numerus 5 vel 6. vel alius quilibet in quadraturm ductus adjectâ unitate conficiat quadratum quod generaliter est facillimnum cum unitas sit quadratus.

Nos peculiari methodo[41] quæstionem hanc et duas proximas[42] resolvimus, cuius beneficio dum quærimus triangulum cuius area unâ cum 5 v . g. [verbi gratia] conficiat quadratum triangulum in minimis[43] exhibemus 9/3 40/3 41/3 cuius area 20 addito 5 facit quadratum 25. sed de ratione et usu nostræ huius methodi non est huius loci plura addere, non sufficeret sanè marginis exiguitas, multa enim habemus huc referenda.


Перевод:

Ошибка Виета[44], без сомнения, имеет такое происхождение: знаменитый муж приравнял площадь к разности двух биквадратов X4 — 1, чтобы при прибавлении упятеренного квадрата получился квадрат.

Поскольку заданное число 5 является суммой двух квадратов, то можно найти упятеренный квадрат, который, уменьшенный на единицу, будет квадратом. Положим сторону квадрата, который нужно упятерить, равной X + 1, причем вместо +1 при X можно взять любое другое число. Упятеренный квадрат от этого будет

5X2 + 10X + 5,

он после прибавления площади X4 — 1 даст

X4 + 5X2 + 10X + 4,

что должно равняться квадрату. Это сделать нетрудно, так как число единиц является квадратом вследствие предположения, присоединенного в качестве условия.

Но Виет не заметил, что вопрос так же хорошо решается, если в качестве площади вместо X4 — 1 взять 1 — X4, так как тогда он немедленно приводится к тому, чтобы заданное число 5, б или любое другое, умноженное на квадрат, сделать квадратом после прибавления единицы, что всегда легко решить, поскольку единица является квадратом.

Мы решили эту и две последующие задачи особым методом, который позволяет, например, отыскать треугольник, площадь которого, увеличенная на 5, составляет квадрат; а именно такой треугольник в минимальных числах есть (9/3, 40/3, 41/3); площадь его 20 и при прибавлении 5 дает квадрат 25.

Но здесь не место для развития принципа и применения этого метода; для этого недостаточны размеры полей, так как нам надо много сказать по этому поводу.

OBSERVATIO D. P. F

XXXV (p. 289)

Ad quæstionem VI Libri VI.

Invenire triangulum rectangulum ut numerus areæ, adsumens unum laterum circa rectum, faciat datum numerum.


Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука