Читаем Observationes Domini Petri de Fermat полностью

Сам же вопрос Диофанта мы подвергли новому исследованию, и, тщательно применив наш метод, получили наконец общее решение; однако мы приведем только один пример, сами числа которого покажут, что они были найдены не случайно, но с помощью регулярного метода.

В предложении Диофанта ищутся два прямоугольных треугольника при условии, что произведение гипотенузы и катета одного имеет к произведению гипотенузы и катета другого отношение, как 5 к 11.

Вот два таких треугольника:

первый треугольник имеет

гипотенузу 48543669109,

основание 36083779309,

высоту 32472275580,

второй треугольник имеет

гипотенузу 42636752938,

основание 41990695480,

высоту 7394200038.

OBSERVATIO D. P. F

XXXI (p. 255)

Ad quæstionem XXX Libri V.

Dato numero tres adinvenire quadratos quorum bini sumpti, adscitoque dato numero, faciant quadraturn.


Huius quæstionis beneficio, sequentis quæstionis solutioneml dabimus quæ alioquin difficillima sane videretur.

Dato numero, quatuor invenire numeros quorum bini sumpti adscitoque dalo numero faciant quadratum. Sit datus numerus 15 et primim per hanc quæstionem reperiantur tres quadrati quorum bini sumpti adscitoque dato numero faciant quadratum. Et sint illi tres quadrati[39]

25. 1/100 529/225.

Ponatur prinmus quatuor numerorum quaesitorum 1Q + 15.

Secundus 10N + 25. (quia 25 est unus ex quadratis, 10N autem est duplum lateris in N.)

Tertius eâdem ratione ponatur 1/5N + 1/100, quartus denique 46/15N + 529/225. Ita quippe institutis positionibus tribus propositi partibus satisfit, quilibet enim numerorum unâ cum primo adscito 15 facit quadratum. Superest ut secundus et tertius addito 15, item tertius et quartus addito 15, denique secundus et quartus, eodem addito 15 faciant quadratum et oritur triplicata æqualitas cuius solutio in promptu cum ex constructione cuius artificium ab hac quæstione desumpsimus in quolibet termino æquando reperiantur unitates tantum quadratæ et numeri. Recurrendum igitur ad ea quæ diximus ad quæstionem uigesimamquartam libri sexti.


Перевод:

Благодаря этой задаче мы получаем решение вопроса, который без этого казался очень трудным:

Дано число, найти четыре числа, сумма любых двух из которых при прибавлении данного числа образует квадрат.

Пусть дано число 15; сначала найдем по методу этой задачи три числа, сумма любых двух из которых вместе с заданным числом образует квадрат. Пусть эти три квадрата будут 9, 1/100, 529/225.

Положим первое из искомых четырех чисел равным X2 — 15, второе 6X + 9 (где 9 является одним из найденных квадратов, а 6 — коэффициент при X — удвоенная его сторона); по тем же соображениям третье положим X + 1/100 и, наконец, четвертое 46/15X529/225.

Благодаря этому три из условий удовлетворяются, так как если взять сумму первого числа и какого-нибудь из оставшихся и если прибавить 15, то будет квадрат.

Нужно еще, чтобы получились квадраты, если прибавить 15 либо к сумме второго и третьего, либо к сумме третьего и четвертого, либо к сумме второго и четвертого. Получится тройное равенство, решение которого очевидно, так как конструкцией, метод которой мы заимствуем из данпой задачи, можно в каждом из выражений, которые мы приравниваем квадратам, сделать свободный член квадратом. Смотри по этому поводу сказанное нами относительно задачи VI24 [в настоящем издании к VI22И. Б.].

OBSERVATIO D. P. F

XXXII (p. 257)

Ad quæstionem XXXI Libri V.

Dato numero tres adinvenire quadratos, quorum bini sumpti detracto dato numero faciant quadratum.


Quo artificio in superiore quæstione usi sumus ut quatuor numeros inveniremus quorŭ bini sumpti adscito dato numero conficerent quadratŭ, simili in hac quæstione uti possumus, ut inveniăntur quatuor numneri quorum bini sumpti detracto dato numero conficiant quadratum. Ponendus enim primus 1Q + numero dato. Secundus quadratus primus ex inventis in hac quæstione una cum duplo ab ipsius latere in N. et reliqua patent.


Перевод:

Способом, аналогичным примененному к предыдущему вопросу о нахождении четырех чисел, сумма любых двух из которых, увеличенная на данное число, образует квадрат, можно решить и этот вопрос о нахождении четырех чисел, сумма любых двух из которых, уменьшенная на данное число, образует квадрат.

А именно положим: первое число равным X2 + данное число, второе число — сумме первого квадрата, найденного в этой задаче, и удвоенной его стороны, умноженной на X, и т. д. Остальное очевидно.

OBSERVATIO D. P. F

XXXIII (p. 258)

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука