Читаем Observationes Domini Petri de Fermat полностью

Invenire tres quadratos, ut solidus sub ipsis contentus, quolibet ipsorum detracto, faciat quadratum. Ponatur solidus sub ipsis contentus 1Q, et rursus quadrati qui queæruntur, sumantur ex triangulis rectangulis, unus a 16/25, alter a 25/169, tertius 64/289; statuo eos in quadratis, et manet 1Q, quolibet ipsorum detracto, faciens quadratum. Superest ut solidus sub tribus contentus æquetur 1Q: est autem solidus ille (25600/1221025)CC; hoc ergo equatur 1Q, et omnia per 1Q dividantur, fiunt (25600/1221025)QQ æqualia I. Est autem unitas quadratus, latus habens quadratum. Ergo oportebat etiam (25600/1221025)QQ esse  quadratum latus habentem quadratum. Rursus itaque res eo est reducta ut inveniantur tria triangula rectangula, ut solidus sub perpendiculis ductus in solidum sub hypotenusis faciat quadratum, qui latus habeat quadratum.* Et si omnia dividamus per productum ex hypotenusa in perpendiculum unius rectangulorum, oportet oriatur qui fit ex producto hypotenusæ in perpendiculum, alicujus rectanguli, in productum ex hypotenusa in perpendiculum alterius, esto unum rectangulorum 3. 4. 5. Eo itaque deventum est, ut inveniantur duo triangula rectangula, ut numerus hypotenusæ et perpendiculi, numeri hypotenusæ et perpendiculi sit 20. Si autem 20 et 5. et est facile, quippe majus est 5. 12. 13. minus 3. 4. 5. Ab his ergo quærenda sunt alia duo, ut numerus hypotenusæ et perpendiculi sit 6. est autem majoris hypotenusa 6½, perpendiculum 60. Minoris autem hypotenusa 2½ qui vero in uno rectangulorum 12. et accipientes minima similium, recurrimus ad propositum initio, et ponimus solidum sub tribus contentum 1Q. ipsorum autem quadratorum alterum 16Q. alterum 576Q. tertium (1/28561)Q. Superest ut solidus sub tribus æquetur 1Q. et omnia in 1Q. latusque lateri æquetur, et invenietur 1N.65. Ad positiones.*


Ad elucidationem et explicationem quæstionis 25. iuxta methodum Diophanti quam Bachetus similiter prætermisit[37] quærenda sunt duo triangula rectangula ut productum sub hypotenusa et perpendiculo unius ad productum sub hypotenusa et pelpendiculo alterius habeat rationem datam.

Quæ sanè quæstio diù nos torsit et verò difficillimam quilibet tentando experietur, sed tandem patuit generalis ad ipsius solutionem methodus.

Quserantur duo triangula ut rectangulum sub hypotenusa unius et perpendiculo, rectanguli sub hypotenusa alterius et perpendiculo sit duplum.

Fingatur unum ex triangulis ab A et B. alterum ab A et D. Rectangulum sub hypotenusa prioris et perpendiculo erit B in A cubum bis + B cub. in A. bis, rectangulum verò sub hypotenusa posterioris et perpendiculo erit D. in A. C. bis + D. C. in A. bis, cum igitur B in A. C. bis + B. C. in A bis sit duplŭ rectanguli D in A. C. bis + D. C. in A. bis, ergo B in A. C. + B. C. in A. æquabitur D. in A. C. bis + D. C. in A. bis et omnibus abs A divisis fiet B in A. quadratum + B. C. æquale D. in A Q bis + D. C. bis et per antithesin D. C. bis — B. C. æquabitur B. in A Q. — D. in A. Q. bis, si igitur D. C. — B bis C. divisum per B — D bis æquetur quadrato soluta erit quæstio.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука