Читаем Observationes Domini Petri de Fermat полностью

Sit igitur inventum triangulum 3. 4. 5. cuius hæc est proprietas ut qui fit mutuo ductu laterum circa rectum adscito solido sub maiore laterum circa rectum intervallo eorumdem, et areâ contento faciat quadratum[53]. Ab eo deducendum aliud eiusdem proprietatis, sit maius ex lateribus circa rectum trianguli quætsiti 4. minus vero 3 + 1N. Rectangulum sub lateribus circa rectum adscito solido sub maiore laterum circa rectum intervallo eorundem et areâ contento, facit 36 — 12N. — 8Q. quae ideo debent æquari quadrato. Cum autem latera 4 et 3 + 1N. sint latera circa rectum trianguli rectanguli, debent etiam eorum quadrata iuncta æquari quadrato. Quadrata illa iuncta faciunt 25 + 6N + 1Q. quæ idcircò etiam æquanda quadrato. Et oritur duplicata æqualitas, nam 36 — 12. N — 8Q. et etiam 25 + 6N + 1Q. debent æquari quadrato. Eius æqualitatis duplicatae solutio est in promptu.


Перевод:

Диофант дает только один вид треугольников, удовлетворяющих задаче; однако наш метод доставляет бесконечно много треугольников различных видов, которые могут быть выведены последовательно из решения Диофанта.

Итак, пусть уже найден треугольник (3, 4, 5), который удовлетворяет условию, „чтобы произведение сторон при прямом угле, сложенное с произведением большего катета, разности этих катетов и площади, давало квадрат“. Из него надо вывести другой треугольник, обладающий тем же свойством.

Пусть наибольшая из сторон при прямом угле искомого треугольника будет 4, а наименьшая 3 + X. Произведение сторон при прямом угле, к которому прибавленно произведение наибольшей стороны при прямом угле на разность этих сторон и площадь треугольника, составит 36 — 12— 8X2, что надо приравнять квадрату. Кроме того, стороны 4 и и 3 + X, будучи сторонами при прямом угле прямоугольного треугольника, должны давать сумму квадратов, равную квадрату; но сумма их квадратов составляет 25 + 6X + X2, что также надо приравнять квадрату. И получается двойное равенство, именно:

36 — 12X — 8X2 и 25 + 6X + X2

должны равняться квадратам. Решение его найти легко.

OBSERVATIO D. P. F

XL (p. 302)

Ad quæstionem XIV Libri VI.

Invenire triangulum rectangulum ut numerus areæ, multatus alterutro laterum circa rectum, faciat quadratum.


Ex nostrâ Methodo solvetur sequens quæstio alioquin difficillima. Invenire triangulum rectangulum ut alterutrum laterum circa rectum multatum areâ facial quadratum.


Перевод:

Нашим методом решается следующий вопрос, который иначе был бы очень труден:

Найти прямоугольный треугольник, у которого каждая из двух сторон при прямом угле, уменьшенная на площадь, составляет квадрат.

OBSERVATIO D. P. F

XLI (p. 307)

Ad quæstiones XV et XVII Libri VI.

13. Invenire triangulum rectangulum ut numerus areæ, tam hypotenusa quam altero laterum circa rectum detracto, faciat quadratum.

17. Invenire triangulum rectangulum ut numerus areæ, tam hypotenusæ quam alterius laterum circa rectum numero adscito, facial quadratum.


Tentetur beneficio nostræ methodi sequens quæstio alioquin difficillima. Invenire triangulum rectangulum ut tam hypotenusa quam unum ex lateribus detractâ areâ faciant quadratum.


Перевод:

Благодаря нашему методу можно попробовать разрешить следующий вопрос, который без этого был бы очень труден:

Найти такой прямоугольный треугольник, что при вычитании площади из гипотенузы или одной из сторон при прямом угле получается квадрат.

OBSERVATIO D. P. F

XLII (p. 320)

Ad quæstionem XIX Libri VI.

Invenire triangulum rectangulum ut areæ numerus cum hypotenusæ numero faciat quadratum, at circumferentiæ numerus sit cubus…

…Oportet itaque invenire quadratum aliquem, qui, binario adjecto, cubum faciat… est igitur quadrati latus 5, cubi vero 3; ipse quadratus 95, cubus 27…


Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука