Физический микромир еще и потому можно считать окном соответствия в континуумальный мир, что он первый начинает сочетать в один комплексный образ то, без сопряжения чего если не континуумальный образ мышления, то континуумальная космология уж точно оказалась бы неисполнимой пространство, вещество и вероятность. В состав современного образа физического пространства входит время, а вероятность, отнесенная ко времени - это стабильность. Стабильность - это показатель устойчивости, что мы уже связали с образом обобщенного пространства как его внутреннюю характеристику, ответственную в числе прочего и за связи с вещественной реальностью, знакомой нам по корпускулярному миру.
Получается, физический микромир поставил нас перед необходимостью сочетать в одном универсальном геометрическом образе три разделенных в корпускулярном мышлении образа: пространства, вещества и вероятности (понимаемой и как показатель стабильности). Независимое существование этих образов не смогло обеспечить непрерывности физическому микромиру, в континуумальном же мире ответственным за нее, как уже говорилось, можно постулятивно назначить наделенное соответствующими полномочиями математическое лицо пространства - метрику. То есть метрика, первым приказом по континуумальному миру назначенная ответственной за его безусловную и безупречную непрерывность (и наделенная соответствующими геометрическими полномочиями), и получила право полномочно представлять все перечисленные корпускулярные образы.
Понимаемая таким образом метрика пространства, ответственного за фрагмент континуумального мира, очевидно, должна выражать пространственное распределение соответствующих ее рангу устойчивых состояний вещества, между которыми расположились состояния менее и гораздо менее устойчивые - в виде тонкой или очень тонкой пленки только что ненулевой реальности, связывающей все участки континуума в одно целое. То есть континуумальный мир микрочастиц предстает перед нами в виде рельефа разновысоких и связанных между собой устойчивых состояний, ответственных за всю внутреннюю жизнь микромира.
Метрический слой микромира закрывает два физических взаимодействия: сильное и слабое. Последнее, в чем можно считаться с их влиянием - это Периодическая таблица. Ее, видимо, и следует считать закрывающей первый метрический пакет континуумальной космологии. Уровневый образ организации всего континуумального Универсума хорошо нам знаком именно по Таблице. В ней он впервые был представлен в виде метрических уровней-периодов, в каждом новом из которых возрастают комбинаторные возможности по отношению к созданию устойчивых метрических форм. Следующий метрический пакет универсума - слой химических соединений, образующих многообразие всех более или менее устойчивых веществ - от простейших двухатомных до самых сложных информационных молекул.
Последние запускают четвертый метрический слой Универсума биологический мир. В нем сложные информационные молекулы, используя резко возросшие комбинаторные возможности своего метрического слоя, создают почти автономные и почти саморегулирующиеся системы-организмы.
А третий слой - слой макрофизических феноменов - образован (собственно, как и четвертый) геометрическим взаимодействием первого слоя (точнее, его гравитационной и электромагнитной составляющими) и второго.
В каждом новом слое, как это можно легко видеть, не только возрастают комбинаторные возможности для устойчивых локальных геометрических комплексов, но и возникают новые геометрические качества, общие и характерные для слоя. Они обеспечиваются пространственной сложностью связей, возникающих между единичными комплексами и с соседними слоями. Для мира живых существ, например, такое его геометрическое качество есть жизнь.
Именно это особое обстоятельство, общее для всего метрического слоя живых существ, запускает следующий, пятый, и последний космологический слой Универсума - слой высшей нервной деятельности.
Жизнеспособность этого слоя, как, впрочем, и любого другого из трех нижележащих, обеспечивается динамической устойчивостью всего Универсумаконтинуума. Похоже, это единственное требование метрической системы к самой себе, которое определяет правила игры внутри каждого пакета и между ними.
Последнее, а именно правила метрической игры между слоями и подслоями Универсума (то есть пространственно-временная геометрия связи между ними), кажется на первый взгляд самым труднопроходимым местом во всей идее полиметрической космологии. Но поскольку в континуумальном мире проблема переходов между метрическими слоями автоматически занимает место в ряду проблем геометрических, можно полагаться на обеспечение ее всей свободой геометрических образов.
Переходы. Актуальные и реликтовые метрики