Переходы между метрическими слоями континуумального мира лежат на границах эволюцонных эпох. В этом смысле последние - аномальные зоны для тех слоев, которые они связывают. И они непременно должны сочетаться с тем, что мы называем краевыми эффектами. Мировая линия каждого перехода начинается тогда, когда начинается становление нового метрического слоя (или подслоя). В это время формирующийся переход соответствует космологически значимой эпохе Перемен.
Перемены - это самое взрывообразное и нелинейное явление в этом мире. Они по большому счету не просчитываются и, тем более, не интерпретируются корпускулярным мышлением (математическая культура квантования - не в счет, потому что уравнение Шредингера скорее отвечает континуумальной рациональности). Поэтому переходы - это самый занимательный фрагмент континуумального мира, обещающий свободой своей геометрической идеи дать нам что-то вещественно новое по сравнению с привычными корпускулярными образами.
Вообще-то сам термин "переход" можно понимать по крайней мере двояко: как действующий на постоянной основе мост и как процесс преодоления расстояния. Для перехода между метрическими слоями интересны оба смысла (тем более, что они в конечном счете сходятся). Первый смысл скорее соответствует той связи, которая существует между всеми вложенными друг в друга метриками в каждой точке эвклидова пространства. Второй - отвечает за то, как возникают эти связи. Одна из рационально непривычных особенностей междуметрического перехода в эволюции континуумального мира состоит в том, что он начинается тогда, когда есть один только метрический берег, и в это время мостик перехода сам выполняет роль берега второго. А так как метрическое расположение другого берега по отношению к первому определяется внутренним условием динамического равновесия континуума-Универсума, то мост прехода начинает из себя другой берег быстро, взрывообразно.
Собственно, то, что проводит связь между метрическими слоями - это скорее даже не мост, а пучок щупалец. Их рост запускает то же условие динамического равновесия континуума из разных точек рельефа устойчивых состояний, а потому будущая связь двух соседних метрических слоев начинается как постепенно учащающийся частокол.
Для того, чтобы представить себе динамическую геометрию междуметрических связей, в сущности, только на свободу геометрических образов мы и можем полагаться. В методологии познания на этот счет разработана стандартная процедура, расширяющая интерпретационные возможности теории: нужно вместо более промежуточных и более метафорических образов найти менее промежуточные и менее метафорические (вообще непромежуточными и неметафорическими, как известно, образы не бывают). Если поставить в соответствие физической абстракции устойчивости- неустойчивости геометрическую абстракцию закрытости-открытости, это будет как раз такая процедура.
Устойчивые метрические состояния находятся в динамическом равновесии в пределах своего метрического слоя, но они закрыты по отношению к образованию новых связей, то есть связей, выходящих за пределы слоя. (Точнее, для того, чтобы открыть устойчивые метрические состояния для новых связей, нужно приложить огромные энергетические усилия, подобные тем энергетическим мукам, на которые обрекла старая корова маршевую роту бравого солдата Швейка, где захотели ее сварить и съесть.)
Менее устойчивые состояния обладают большей вероятностью образовывать новые связи, не учтенные в закрытом списке связей своего слоя. Разве что совсем неустойчивые состояния, находящиеся далеко от границы с новым метрическим слоем не обладают в этом плане оптимистической вероятностью, так как невелика стабильность самих их мировых линий.
Таким образом, только квазиустойчивые состояния метрического слоя обладают благоприятными геометрическими условиями для организации переходов в новые, вышележащие метрики. Нечего и говорить, что вообще это возможно только для верхних, открытых, или актуальных метрик, а для обитателей нижележащих, реликтовых метрик этот переход настолько маловероятен, что можно считать его закрытым. (Разговор о верхних и нижних метриках, конечно, вовсе не опровергает начальной геометрической идеи континуумальной космологии о вложенных друг в друга метриках, а только имеет в виду очередность их появления и, соответственно, "вложенного" наслоения друг на друга).
По мере того, как увеличивается число открытых связей на поверхности актуального метрического слоя, происходит накопление материала для нового слоя, или, можно сказать, происходит коллективизация геометрических оснований для новой устойчивой метрики. В переводе с геометрической на энергетическую клавиатуру символов это соответствует разогреву системы, то есть, Метасистемы, то есть Универсума-континуума.