•
•
2.1.2. Оптимизационное пространство
Оптимизационное пространство представляет собой совокупность всех возможных комбинаций значений параметров. Оно определяется тремя факторами:
1. Количеством оптимизируемых параметров (размерность);
2. Диапазоном допустимых значений для каждого параметра;
3. Шагом оптимизации.
Большинство задач оптимизации, представляющих практический интерес для построения автоматизированных торговых систем, являются многомерными. Это означает, что целевая функция рассчитывается на основе многих параметров (то есть имеет более одного аргумента). В отдельных случаях количество оптимизируемых параметров может быть очень большим (хотя в этих случаях многократно возрастает риск переоптимизации, о чем речь пойдет в следующих главах). Поскольку нас интересуют только прямые методы оптимизации (когда значения целевой функции рассчитываются алгоритмически), сложность алгоритма напрямую зависит от размерности целевой функции. Соответственно, сложность решения задачи оптимизации определяется количеством аргументов этой функции, то есть количеством параметров.
Диапазон допустимых значений определяется теми ограничениями, которые разработчик торговой системы накладывает на параметры, участвующие в расчете целевой функции. Например, в главе 1 нами исследовались два параметра – порог критерия и диапазон страйков. В качестве диапазона допустимых значений для первого параметра использовался интервал от нуля до бесконечности. Логика выбора именно такого диапазона заключается в следующем. Поскольку в качестве критерия мы использовали математическое ожидание прибыли, то было вполне естественным не рассматривать ту часть диапазона значений параметра, где ожидаемая прибыль отрицательна. Для параметра «порог критерия» диапазон значений был определен от 0 до 50 %. Нижний предел обусловлен тем, что данный параметр не может быть отрицательным. Верхний же предел объясняется невозможностью практического использования страйков, отстоящих слишком далеко от текущей цены базового актива (в силу их низкой ликвидности и широких спредов).
Наилучшим методом прямой оптимизации является расчет целевой функции для всех допустимых значений параметра (метод полного перебора). Однако на практике такой подход оказывается в большинстве случаев нереализуем по причине того, что количество допустимых значений может быть слишком большим. Если параметр является целочисленным, то количество его значений конечно (в пределах допустимого диапазона, не включающего бесконечности). Тем не менее даже в этом случае полный перебор всех значений может потребовать неоправданно большого количества расчетов и времени. В случае же если параметр является непрерывной величиной, то количество принимаемых им значений бесконечно вне зависимости от диапазона допустимых значений. В такой ситуации необходимо задать некоторый шаг изменения его значения (мы будем называть его «шагом оптимизации») и исследовать параметр, каждый раз изменяя его на величину шага. Чем больше величина шага, тем меньше времени потребуется для оптимизации. Однако при использовании слишком широкого шага возрастает риск пропуска глобального максимума (острый пик может оказаться в промежутке между двумя значениями параметра).
Форма оптимизационного пространства влияет самым непосредственным образом на результаты процедуры оптимизации и на ее эффективность. При одномерной оптимизации (когда имеется всего один параметр) оптимизационное пространство может быть представлено в виде линии с координатами, соответствующими значениям параметра (ось