Читаем Опционы полностью

В случае двумерной оптимизации (когда имеются два параметра) оптимизационное пространство может быть легко представлено в виде поверхности. Такую поверхность удобно изображать в виде топографической карты, оси которой соответствуют параметрам, а высотные отметки – целевой функции. Унимодальная поверхность будет иметь одну вершину, а полимодальная – множество таких возвышений. Более или менее плоская поверхность является безмодальной и малопригодной для оптимизации.

В трехмерном случае моды представляют собой области высоких значений всех трех параметров. Их можно изобразить в трехмерном пространстве, как участки с повышенной плотностью. (Хотя такое представление является достаточно условным и не совсем точным.) В случаях с более высокой размерностью невозможно представить оптимизационное пространство топологически, но это и необязательно, поскольку расчетные алгоритмы не нуждаются в нашем воображении.

Большинство методов оптимизации лучше всего приспособлены к поиску глобального максимума унимодального пространства. При наличии в пространстве параметров локальных максимумов, многие методы достигают решения, которое может не оказаться наилучшим.

Оптимизационное пространство обладает рядом свойств, оказывающих существенное влияние на поиск оптимальных решений. Среди них следует отметить два основных. Первое – это гладкость оптимизационного пространства. В двумерном случае гладкость обозначает отсутствие большого количества небольших локальных максимумов, делающих поверхность «холмистой». В предельных случаях оптимизационное пространство может быть либо абсолютно гладким (с единственным экстремумом), либо полностью изломанным с большим количеством острых пиков и впадин (в двумерном случае). Очевидно, гладкое пространство является предпочтительным с точки зрения эффективности оптимизации. Холмистое пространства повышает риск остановки процедуры оптимизации на локальном экстремуме. Далее мы покажем (раздел 2.7.2), что чем более гладким является пространство, тем выше эффективность применения различных методов оптимизации и тем больше вероятность нахождения наилучшего решения.

Второе важное свойство – это устойчивость оптимизационного пространства. Под устойчивостью мы понимаем нечувствительность рельефа пространства (или, другими словами, неизменность формы пространства) к небольшим изменениям параметров, которые не участвуют в оптимизации, а фиксируются исходя из определенных соображений разработчика торговой стратегии. Сюда же можно отнести и устойчивость к небольшим изменениям в структуре стратегии. Другой, не менее важный аспект устойчивости, – это степень чувствительности оптимизационного пространства к протяженности исторических ценовых рядов, используемых для расчета значений целевой функции. Слишком короткие ценовые ряды приводят к тому, что торговая система настраивается только на недавние рыночные тренды. С другой стороны, длинные ценовые ряды настраивают систему на возможно устаревшие данные. Кроме того, желательно, чтобы исторические данные, используемые в оптимизации, отражали различные состояния рынка (то есть спокойные и кризисные периоды). Все эти соображения приводят к тому, что при настройке торговой системы приходится экспериментировать с историческими рядами разной протяженности. В таких ситуациях желательно, что бы форма оптимизационной поверхности не очень изменялась (то есть была устойчивой) при относительно небольших изменениях длины исторических рядов.

<p>2.1.3. Целевая функция</p>

Все задачи оптимизации сводятся к отысканию наибольшего или наименьшего значения некоторой функции, которую принято называть целевой функцией. Она представляет собой отображение вектора значений параметров (которые являются аргументами функции) на число, являющееся значением функции в определенной точке оптимизационного пространства. Целевая функция может быть задана формулой или расчетным алгоритмом (который по заданному набору параметров вычисляет значение оптимизируемой величины) или браться из эксперимента. Методы поиска оптимальных решений зависят от свойств целевой функции и той информации о ней, которая является доступной в процессе решения задачи.

Перейти на страницу:

Похожие книги

Строить. Неортодоксальное руководство по созданию вещей, которые стоит делать
Строить. Неортодоксальное руководство по созданию вещей, которые стоит делать

Тони Фаделл возглавлял команды, создавшие iPod, iPhone и Nest Learning Thermostat, и за 30 с лишним лет работы в Кремниевой долине узнал о лидерстве, дизайне, стартапах, Apple, Google, принятии решений, наставничестве, сокрушительных неудачах и невероятных успехах столько, что хватило бы на целую энциклопедию. Тони использует примеры, которые мгновенно захватывают внимание, например, процесс создания самых первых iPod и iPhone. Каждая глава призвана помочь читателю решить проблему, с которой он сталкивается в данный момент - как получить финансирование для своего стартапа, уйти с работы или нет, или просто как вести себя с придурком в соседнем кабинете. Тони прокладывал свой путь к успеху рядом с такими наставниками, как Стив Джобс и Билл Кэмпбелл, иконами Кремниевой долины, которые снова и снова добивались успеха. Но Тони не следует кредо Кремниевой долины, согласно которому для создания чего-то великого необходимо изобретать все с нуля. Его советы нестандартны, потому что они старой закалки. Тони понял, что человеческая природа не меняется. Не нужно изобретать способы руководства и управления - нужно изобретать то, что ты делаешь. Тони Фаделл – американский топ-менеджер. Он создал iPod и iPhone, основал компанию Nest и создал самообучающийся термостат Nest. За свою карьеру Тони стал автором более 300 патентов. Сейчас он возглавляет инвестиционную и консультационную компанию Future Shape, где занимается наставничеством нового поколения стартапов, которые меняют мир.  

Tony Fadell , Тони Фаделл

Финансы / Прочая компьютерная литература / Банковское дело