Читаем Опционы полностью

Таким образом, можно сделать вывод, что диапазон значений параметров влияет на форму оптимизационного пространства и в значительной степени определяет выбор окончательного оптимального решения. В целом, чем больше область допустимых значений параметров, тем больше шанс, что максимум целевой функции попадет в исследуемое оптимизационное пространство. Однако при этом уменьшается шанс найти этот максимум в процессе оптимизации, поскольку, во-первых, возникает необходимость проверять большее количество узлов и, во-вторых, из-за сложности поверхности возрастает риск «застрять» на локальных максимумах.

<p>2.2.3. Шаг оптимизации</p>

Шаг оптимизации не оказывает определяющего влияния на общую форму оптимизационного пространства, однако он влияет самым прямым образом на глубину его проработки. Чем шире шаг, тем больше деталей рельефа оптимизационного пространства может быть упущено в процессе оптимизации. Например, из-за слишком широкого шага оптимизации можно вовсе не обнаружить узкий пик функции полезности. Следовательно, при увеличении шага объем информации о целевой функции уменьшается.

Для рассматривавшейся ранее оптимизационной поверхности (рис. 2.2.2) использовался шаг два дня (для параметра «число дней до экспирации») и пять дней (для параметра «период истории для расчета HV»). Теперь мы увеличим эти значения – до четырех и 10 дней соответственно – и посмотрим какой эффект это окажет на информативность пространства. Левый график рис. 2.2.4 демонстрирует поверхность, полученную в результате увеличения шага. Сравнивая эту поверхность с рис. 2.2.2, мы видим, что, несмотря на уменьшение деталей, область глобального максимума сохранилась. Ранее узел глобального максимума имел координаты 30 по горизонтальной оси и 105 по вертикальной, теперь глобальный максимум имеет координаты 30 и 100. Хотя узел, имевший самое высокое значение целевой функции (7,1 %) исчез, его место в качестве глобального максимума занял соседний узел, целевая функция которого имеет весьма близкое значение (7 %).

Продолжим процедуру укрупнения шага, увеличив его значения до шести дней для параметра «число дней до экспирации» и 15 дней для параметра «период истории для расчета HV». Количество деталей рельефа уменьшилось еще больше (правый график рис. 2.2.4). Кроме того, полностью исчезла прежняя оптимальная область, располагавшаяся ранее вдоль 30-й вертикали и содержавшая узел глобального максимума. Новый глобальный максимум теперь имеет координаты 32 и 125, а значение новой целевой функция деградирует до 5,5 %. Отсюда следует вывод, что по мере укрупнения шага оптимизации происходит ухудшение находимых оптимальных решений.

Вместе с тем увеличение шага оптимизации имеет и свои плюсы. Несмотря на сдвиг в координатах глобального максимума и ухудшение находимых решений, новая оптимальная область по-прежнему остается приблизительно в том же районе оптимизационного пространства, что и при более детальной проработке. При этом само пространство получается более гладким. Преимущество сглаживания заключается в том, что большинство незначительных локальных экстремумов исчезает из оптимизационного пространства. В результате уменьшается вероятность того, что процесс оптимизации (использующий более экономные способы поиска оптимального решения, чем метод полного перебора) остановится на локальном максимуме.

Следовательно, увеличение шага оптимизации, с одной стороны, уменьшает шанс того, что максимум целевой функции, попадет в исследуемое оптимизационное пространство, но, с другой стороны, снижает количество вычислений и повышает эффективность поиска за счет устранения незначительных локальных экстремумов.

<p>2.3. Целевые функции и их применение для базовой дельта-нейтральной стратегии</p>

С помощью целевой функции мы оцениваем и сравниваем между собой меру полезности различных комбинаций параметров. Поэтому выбор целевой функции является одним из ключевых элементов, во многом определяющим эффективность оптимизации. Каждая функция создает оптимизационное пространство, имеющее свои характерные особенности. Оптимизационные пространства разных функций полезности могут быть достаточно близкими по своей форме, а могут существенно отличаться друг от друга. В этой главе мы рассмотрим различные функции полезности, создающие как похожие, так и весьма далекие по форме пространства.

Перейти на страницу:

Похожие книги

Строить. Неортодоксальное руководство по созданию вещей, которые стоит делать
Строить. Неортодоксальное руководство по созданию вещей, которые стоит делать

Тони Фаделл возглавлял команды, создавшие iPod, iPhone и Nest Learning Thermostat, и за 30 с лишним лет работы в Кремниевой долине узнал о лидерстве, дизайне, стартапах, Apple, Google, принятии решений, наставничестве, сокрушительных неудачах и невероятных успехах столько, что хватило бы на целую энциклопедию. Тони использует примеры, которые мгновенно захватывают внимание, например, процесс создания самых первых iPod и iPhone. Каждая глава призвана помочь читателю решить проблему, с которой он сталкивается в данный момент - как получить финансирование для своего стартапа, уйти с работы или нет, или просто как вести себя с придурком в соседнем кабинете. Тони прокладывал свой путь к успеху рядом с такими наставниками, как Стив Джобс и Билл Кэмпбелл, иконами Кремниевой долины, которые снова и снова добивались успеха. Но Тони не следует кредо Кремниевой долины, согласно которому для создания чего-то великого необходимо изобретать все с нуля. Его советы нестандартны, потому что они старой закалки. Тони понял, что человеческая природа не меняется. Не нужно изобретать способы руководства и управления - нужно изобретать то, что ты делаешь. Тони Фаделл – американский топ-менеджер. Он создал iPod и iPhone, основал компанию Nest и создал самообучающийся термостат Nest. За свою карьеру Тони стал автором более 300 патентов. Сейчас он возглавляет инвестиционную и консультационную компанию Future Shape, где занимается наставничеством нового поколения стартапов, которые меняют мир.  

Tony Fadell , Тони Фаделл

Финансы / Прочая компьютерная литература / Банковское дело