Для того чтобы получить полное представление о форме и свойствах оптимизационного пространства, показанного на рис. 2.2.2, необходимо было вычислить значения целевой функции во всех 3600 узлах. Поскольку данная оптимизация рассчитывалась на 10-летней базе данных (как и все прочие оптимизации, рассматриваемые в этой главе), расчет одного узла занял порядка одной минуты. Соответственно, расчеты для всего оптимизационного пространства заняли порядка 60 часов. Для нашего исследования это вполне приемлемо, но для оперативной практической работы такие большие временные затраты не всегда допустимы. Особенно если учесть, что в реальности может быть больше двух параметров, и каждый параметр может иметь больше 60 значений в своем диапазоне. Кроме того, 3600 – это число узлов, которые необходимо вычислить только для одной целевой функции, а их обычно бывает больше (около трех-четырех). Поэтому на практике в большинстве случаев невозможно вычислить все оптимизационное пространство. Вместо этого приходится применять методы целенаправленного поиска оптимального решения (этому вопросу посвящен раздел 2.7).
2.2.2. Область допустимых значений параметров
В этом разделе мы рассмотрим, каким образом диапазон допустимых значений параметра влияет на форму оптимизационного пространства и на поиск оптимального решения. Начнем с того, что для каждого из двух параметров сократим вдвое диапазоны значений (относительно диапазонов, использовавшихся в предыдущем разделе). Для параметра «период истории для расчета HV» верхняя граница нового диапазона составит 150 дней, для параметра «количество дней до экспирации опционов» – 60 дней. Эти ограничения приведут к сжатию объема оптимизационного пространства в четыре раза. (В случае трехмерной оптимизации сокращение диапазона значений в два раза привело бы к восьмикратному сжатию объема.) В этом состоит положительный эффект такого сокращения диапазонов, поскольку теперь для построения полного пространства потребуется произвести 900 вместо 3600 вычислений.
На левом графике рис. 2.2.3 показано оптимизационное пространство, построенное для новых диапазонов допустимых значений. Сравнение этого уменьшенного пространства с более обширным вариантом (рис. 2.2.2) убеждает в том, что область глобального максимума не была потеряна в результате введения более жестких ограничений на диапазон допустимых значений параметров. Теперь эта область находится почти в центре пространства. Кроме того, за рамками нового оптимизационного пространства осталась большая часть области низких значений целевой функции. Это означает, что доля области оптимальных значений относительно общего объема оптимизационного пространства существенно возросла. Следовательно, вероятность нахождения глобального максимума в процессе поиска оптимального решения (используя методы, не требующие полного перебора) также повысилась. Однако, выбирая область допустимых значений, следует исходить из того, что мы не знаем, как выглядит полное оптимизационное пространство. Поэтому, сокращая диапазон допустимых значений, мы можем исключить из рассмотрения хорошую область, содержащую наилучшее решение.
Кроме того, диапазон допустимых значений не должен обязательно начинаться с наименьших возможных значений параметра, как это было сделано в предыдущих примерах (рис. 2.2.2 и 2.2.3, левый график). Допустим, что разработчик создает стратегию, работающую с более долгосрочными опционами. В этом случае он может задать нижнюю границу на диапазон допустимых значений параметра «число дней до экспирации». Допустим – это будет 60 дней (пусть верхняя граница остается без изменений). Изменение в диапазоне этого параметра потребует внесения изменений и в диапазон второго параметра, поскольку при торговле долгосрочными опционами неразумно оценивать их с помощью критерия, рассчитываемого на основании волатильности, оцененной на более коротком периоде, чем период обращения самих опционов. Следовательно, диапазон значений параметра «период истории для расчета HV» должен быть также ограничен снизу 60 днями (для того чтобы количество значений каждого параметра в пределах допустимого диапазона было одинаковым, верхнюю границу ограничим значением 210).
Рассмотрим оптимизационную поверхность, полученную для новых диапазонов допустимых значений параметров (правый график рис. 2.2.3). Совершенно очевидно, что в этом случае результаты оптимизации будут другими. Глобальный максимум теперь имеет другие координаты – 106 по горизонтальной оси и 145 по вертикальной. В том случае, когда рассматривалось более широкое пространство, этот узел являлся локальным максимумом. Теперь же, когда более высокий экстремум остался за рамками рассмотрения, локальный максимум превратился в глобальный. Значение целевой функции в этом узле составляет 4,1 % (ниже глобального максимума более широкого пространства, 7,1 %).