Читаем Опционы полностью

Изучив оптимизационные пространства четырех функций полезности, мы можем сделать несколько важных выводов. Каждая из функций несет определенный объем информации, часть которой дублируется информацией, содержащейся в других функциях, а часть является уникальной, неповторяющейся информацией. При этом степень совпадения информации может быть разной для разных функций. Например, коэффициент Шарпа не добавляет почти никакой новой информации к информации, содержащейся в функции «прибыль». Поэтому вряд ли будет целесообразным использовать обе этих функции одновременно (объем дополнительных вычислений не оправдывает ту малую долю дополнительной информации, которая может быть получена). В то же время другие функции полезности содержат значительный объем новой недублирующей информации, которая не может быть получена с помощью функции «прибыль». Поэтому включение таких функций в систему многокритериальной оптимизации может быть вполне оправданным.

В этом разделе мы провели визуальный сравнительный анализ различных функций полезности и отметили разную степень дублирования содержащейся в них информации. Для того чтобы придать этим умозрительным заключениям количественное выражение, которое может быть использовано для окончательного выбора целевых функций, необходимо изучить их корреляции. Этому посвящен следующий раздел.

<p>2.3.2. Взаимозависимость целевых функций</p>

Для того чтобы выразить количественно степень дублирования информации, содержащейся в различных функциях полезности, следует сравнить попарно взаимозависимости этих функций. Чем меньше корреляция между функциями, тем меньше пересечение информации и тем это лучше с точки зрения многокритериальной оптимизации. Коэффициент корреляции выражает степень взаимозависимости функций, а коэффициент детерминации (квадрат коэффициента корреляции) выражает долю изменчивости одной функции полезности, которая объясняется изменчивостью второй функции. Следовательно, показатель, равный разности единицы и коэффициента детерминации, позволяет оценить долю дополнительной, недублирующей информации, которая попадает в систему оптимизации в результате введения в нее дополнительной функции полезности.

Корреляционный анализ показал, что все целевые функции взаимозависимы в большей или меньшей степени (рис. 2.3.2). Как и следовало ожидать, наибольшая корреляция существует между прибылью и коэффициентом Шарпа (внешняя схожесть оптимизационных пространств этих двух функций отмечалась нами в предыдущем разделе). В этом случае коэффициент корреляции очень высок (r = 0,95). Следовательно, доля недублирующейся информации, составляет всего 10 % (1 – 0,952 = 0,10). Поэтому не имеет смысла использовать одновременно и прибыль, и коэффициент Шарпа в рамках одной оптимизационной схемы.

Степень взаимозависимости между прибылью и процентом прибыльных сделок, а также между прибылью и максимальной просадкой гораздо ниже, чем между прибылью и коэффициентом Шарпа (обратная зависимость в случае с максимальной просадкой, по сути, является прямой, поскольку низкие значения просадки являются предпочтительными). В первом случае коэффициент корреляции равен 0,37 (левый средний график рис. 2.3.2), а во втором – 0,35 (правый верхний график рис. 2.3.2). Это означает, что доля недублирующейся информации для этих пар целевых функций составляет 86 и 88 % соответственно. Эти значения достаточно высоки для того, чтобы серьезно рассматривать вопрос о целесообразности их включения в систему многокритериальной оптимизации. Однако, принимая такое решение, необходимо определить, имеет ли смысл использовать обе эти функции или достаточно одной из них.

Для того чтобы принять такое решение, необходимо изучить взаимозависимость между этими двумя функциями полезности. Как следует из правого нижнего графика рис. 2.3.2 и низкого коэффициента корреляции (0,10), значения процента прибыльных сделок и максимальной просадки практически не зависят друг от друга. Информация, содержащаяся в этих двух функциях, почти не повторяется (доля не дублируемой информации составляет 99 %). Следовательно, добавление обеих целевых функций в систему многокритериального анализа вполне оправдано.

Таким образом, из четырех рассмотренных нами целевых функций имеет смысл использовать для многокритериальной оптимизации только три (прибыль, процент прибыльных сделок и максимальную просадку). Исключение из многокритериального анализа коэффициента Шарпа оправдывается не только тем, что эта функция почти полностью дублирует функцию прибыли, но еще и тем, что коэффициент Шарпа коррелирует с процентом прибыльных сделок и с максимальной просадкой в гораздо большей степени, чем функция прибыли (средний правый и левый нижний графики рис. 2.3.2).

Перейти на страницу:

Похожие книги

Строить. Неортодоксальное руководство по созданию вещей, которые стоит делать
Строить. Неортодоксальное руководство по созданию вещей, которые стоит делать

Тони Фаделл возглавлял команды, создавшие iPod, iPhone и Nest Learning Thermostat, и за 30 с лишним лет работы в Кремниевой долине узнал о лидерстве, дизайне, стартапах, Apple, Google, принятии решений, наставничестве, сокрушительных неудачах и невероятных успехах столько, что хватило бы на целую энциклопедию. Тони использует примеры, которые мгновенно захватывают внимание, например, процесс создания самых первых iPod и iPhone. Каждая глава призвана помочь читателю решить проблему, с которой он сталкивается в данный момент - как получить финансирование для своего стартапа, уйти с работы или нет, или просто как вести себя с придурком в соседнем кабинете. Тони прокладывал свой путь к успеху рядом с такими наставниками, как Стив Джобс и Билл Кэмпбелл, иконами Кремниевой долины, которые снова и снова добивались успеха. Но Тони не следует кредо Кремниевой долины, согласно которому для создания чего-то великого необходимо изобретать все с нуля. Его советы нестандартны, потому что они старой закалки. Тони понял, что человеческая природа не меняется. Не нужно изобретать способы руководства и управления - нужно изобретать то, что ты делаешь. Тони Фаделл – американский топ-менеджер. Он создал iPod и iPhone, основал компанию Nest и создал самообучающийся термостат Nest. За свою карьеру Тони стал автором более 300 патентов. Сейчас он возглавляет инвестиционную и консультационную компанию Future Shape, где занимается наставничеством нового поколения стартапов, которые меняют мир.  

Tony Fadell , Тони Фаделл

Финансы / Прочая компьютерная литература / Банковское дело