Теперь перейдем к рассмотрению влияния второго параметра, «число дней до экспирации опционов» на взаимозависимость целевых функций (рис. 2.3.4). Данный параметр влияет на скоррелированность целевых функций в гораздо большей степени, чем «период истории для расчета HV» (сравни рис. 2.3.3 и 2.3.4). Даже небольшие изменения параметра приводят к весьма существенным изменениям корреляций. Коэффициенты корреляции почти всех пар целевых функций колеблются в очень широком диапазоне (от –0,9 до 0,9). Однако в отличии от предыдущего случая (когда рассматривалось влияние параметра «период истории для расчета HV») влияние количества дней, остающихся до истечения опционов, весьма хаотично. В динамике коэффициентов корреляции отсутствуют всякие признаки трендов.
Единственное исключение составляет пара целевых функций «прибыль» и «коэффициент Шарпа». В этом случае коэффициент корреляции не зависит от количества дней до экспирации и сохраняет максимально высокое значение почти на всем диапазоне допустимых значений параметра (рис. 2.3.4). Точно такая же картина наблюдалась для этой пары целевых функций при изучении влияния параметра «период истории для расчета HV» (рис. 2.3.3).
Можно сделать вывод, что, принимая решение о включении той или иной целевой функции в систему многокритериальной оптимизации, следует руководствоваться степенью взаимозависимости рассматриваемых функций. Предпочтение нужно отдавать тем из них, которые коррелируют в наименьшей степени. Это обеспечит внесение в систему максимального количества новой, недублирующейся информации. Определяя степень допустимой взаимозависимости (порог коэффициента корреляции, выше которого целевая функция не принимается), необходимо убедиться в том, что корреляция целевых функций не зависит от значений параметров. В случае если такая зависимость существует (как было показано выше), то для принятия решения нужно использовать такой коэффициент корреляции, который был рассчитан на данных, в наибольшей степени соответствующих логике разрабатываемой торговой стратегии.
2.4. Многокритериальная оптимизация
В предыдущем разделе мы рассмотрели вопрос выбора целевых функций для их дальнейшего использования в системе многокритериальной оптимизации. Данный раздел посвящен поиску оптимальных решений с помощью методов многокритериального анализа. Применительно к параметрической оптимизации задача многокритериального анализа состоит в одновременном использовании многих целевых функций (каждая из которых представляет собой отдельный критерий) для упорядочения узлов оптимизационного пространства (каждый из которых представляет собой определенную уникальную комбинацию параметров) по степени их предпочтительности.
Основная проблема многокритериальной оптимизации состоит в том, что полное упорядочение альтернатив может оказаться невозможным по причине их нетранзитивности. Поясним это на простом примере. Будем считать лучшим тот вариант, который превосходит остальные по большинству критериев. Предположим, что при сравнении трех узлов (
Проблема нетранзитивности не имеет универсального решения. Тем не менее существуют два основных подхода, позволяющих получить приемлемое оптимальное решение (или несколько решений), несмотря на несоблюдение свойства транзитивности. Первый подход основывается на приведении всех целевых функций к единому критерию, называемому «свертка», второй подход состоит в применении метода Парето.
2.4.1. Свертка
Отказ от одновременного использования нескольких критериев путем замены их новым единственным критерием (представляющим собой некую функцию, аргументами которой являются исходные критерии) составляет суть свертки. Преимуществом свертки является простота реализации и возможность регулировать степень влияния различных критериев на результат оптимизации. Это достигается путем умножения значений критериев на выбранные весовые коэффициенты – чем больше вес данного критерия, тем большее влияние он окажет на окончательный результат многокритериальной оптимизации. Основным недостатком свертки является неизбежная потеря информации при переходе от многомерного вектора критериев к единственному показателю.