Читаем Опционы полностью

Формализация задачи многокритериальной оптимизации выглядит следующим образом. Пусть для каждого узла (альтернативы) a из оптимизационного пространства задан n-мерный вектор значений целевых функций (критериев) x(a) = (x1(a), …, xn(a)). Используя показатели n критериев, необходимо найти альтернативы с максимальными значениями координат векторов (то есть с максимальными показателями целевых функций). Будем считать, что чем больше значение критерия, тем лучше альтернатива. При сравнении двух альтернатив a и b альтернатива a доминирует над альтернативой b, если выполняется следующая совокупность неравенств: xi(a) ≥ xi(b), для всех значений i = 1, …, n, и существует хотя бы один критерий j, для которого выполняется строгое неравенство xj(a) > xj(b). Другими словами, узел a предпочтителен узлу b, если a не уступает b по значениям всех целевых функций и хотя бы по одной из них превосходит b.

Очевидно, что наличие доминирования однозначно определяет, какая из двух сравниваемых альтернатив лучше. Если же отношение доминирования установить невозможно, то вопрос о том, какая из них лучше, остается открытым. В этом случае говорят, что ни одна из альтернатив не обладает однозначным превосходством (не доминирует) над другой.

Используя приведенные рассуждения, задачу многокритериальной оптимизации можно сформулировать следующим образом: среди множества всех альтернатив найти такое подмножество, в которое входят только недоминируемые альтернативы, то есть те, для которых не существует доминирующих их альтернатив. Это подмножество и называется множеством Парето. Каждый элемент такого множества можно считать наилучшим в определенном выше смысле. При этом число альтернатив, составляющих это множество, может быть самым различным. Например, это может быть как одна, доминирующая над всеми остальными, альтернатива, так и несколько «лучших» альтернатив или даже все исходное множество.

В нашем примере оптимизации базовой дельта-нейтральной стратегии мы имеем оптимизационное пространство A = (a1, …, am), состоящее из m узлов-альтернатив (в примере m = 3600), оцененных с помощью n функций-критериев (n = 3) со значениями x(a) = (x1(a1), …, xn(am)). Для построения множества Парето необходимо попарно сравнить все альтернативы, отбрасывая доминируемые, а недоминируемые добавляя в множество Парето. Очередной элемент ak сравнивается со всеми оставшимися. Если встречается элемент al, над которым ak доминирует, то элемент al отбрасывается. Если оказывается, что ak доминируем каким-либо элементом am из оставшихся, то отбрасывается элемент ak. Если ни один из элементов не доминирует над ak, то последний включается во множество Парето. Далее переходим к сравнениям элемента, следующего за ak, со всеми оставшимися элементами. При этом максимальное количество требуемых сравнений составляет порядка 0,5m (m – 1), что вполне приемлемо для большинства случаев. Более быстрые алгоритмы требуются при построении множества Парето для большого числа критериев и альтернатив.

Как было сказано выше, недостатком метода Парето является невозможность повлиять на количество узлов, попадающих в оптимальное множество Парето. Число элементов множества может изменяться от случая к случаю и не зависит от наших пожеланий и предпочтений. Единственное оптимальное решение может быть получено только в том случае, когда оптимизационное пространство имеет узел, для которого показатели всех критериев превосходят соответствующие показатели для других узлов. В большинстве случаев вместо единственного оптимального решения получается множество.

Рассмотрим применение метода Парето на примере базовой дельта-нейтральной стратегии. В качестве критериев будем использовать те же три целевые функций, что использовались в многокритериальной оптимизации методом свертки (прибыль, максимальная просадка и процент прибыльных сделок). В отличие от свертки, метод Парето не позволяет построить полное оптимизационное пространство, аналогичное поверхности, показанной на рис. 2.4.1. Вместо этого мы получаем перечень доминирующих узлов, составляющих оптимальное множество. В результате оптимизационная поверхность превращается в координатную плоскость, обозначающую положение отдельных оптимальных узлов (рис. 2.4.2).

Перейти на страницу:

Похожие книги

Строить. Неортодоксальное руководство по созданию вещей, которые стоит делать
Строить. Неортодоксальное руководство по созданию вещей, которые стоит делать

Тони Фаделл возглавлял команды, создавшие iPod, iPhone и Nest Learning Thermostat, и за 30 с лишним лет работы в Кремниевой долине узнал о лидерстве, дизайне, стартапах, Apple, Google, принятии решений, наставничестве, сокрушительных неудачах и невероятных успехах столько, что хватило бы на целую энциклопедию. Тони использует примеры, которые мгновенно захватывают внимание, например, процесс создания самых первых iPod и iPhone. Каждая глава призвана помочь читателю решить проблему, с которой он сталкивается в данный момент - как получить финансирование для своего стартапа, уйти с работы или нет, или просто как вести себя с придурком в соседнем кабинете. Тони прокладывал свой путь к успеху рядом с такими наставниками, как Стив Джобс и Билл Кэмпбелл, иконами Кремниевой долины, которые снова и снова добивались успеха. Но Тони не следует кредо Кремниевой долины, согласно которому для создания чего-то великого необходимо изобретать все с нуля. Его советы нестандартны, потому что они старой закалки. Тони понял, что человеческая природа не меняется. Не нужно изобретать способы руководства и управления - нужно изобретать то, что ты делаешь. Тони Фаделл – американский топ-менеджер. Он создал iPod и iPhone, основал компанию Nest и создал самообучающийся термостат Nest. За свою карьеру Тони стал автором более 300 патентов. Сейчас он возглавляет инвестиционную и консультационную компанию Future Shape, где занимается наставничеством нового поколения стартапов, которые меняют мир.  

Tony Fadell , Тони Фаделл

Финансы / Прочая компьютерная литература / Банковское дело