Читаем Опционы полностью

В соответствии с данным ранее определением оптимальное решение, расположенное в пределах такой области, является робастным. Если же оптимальное решение располагается в области, характеризующейся большими перепадами высот, острыми пиками и глубокими впадинами, то оно является менее робастным и, соответственно, менее надежным.

Хотя применительно к процедуре оптимизации понятие робастности не имеет строгого математического определения, в общем виде можно утверждать, что оптимальное решение, расположенное на гладкой поверхности, является более робастным, чем решение, расположенное на изломанной поверхности. Если решение робастно, то небольшие изменения в значениях оптимизируемых параметров не приводят к большим изменениям целевой функции.

Для того чтобы выбор оптимального решения основывался не только на высотной отметке, но и учитывал робастность, необходимо количественно оценить рельеф окружающей области и меру его изломанности. В случае многомерного пространства эта задача очень сложна и требует привлечения методов топологии. Однако для двумерного пространства можно предложить несколько относительно простых в реализации решений.

<p>2.5.1. Усреднение соседних ячеек</p>

Этот метод оценки робастности аналогичен построению скользящих средних. При построении скользящего среднего усреднение целевой функции (обычно это цена или объем торгов) производится по мере движения во времени, а само усреднение используется для описания временной динамики и определения ценовых или каких-либо других трендов. Для изучения рельефа оптимизационной поверхности и оценки робастности оптимального решения, усреднение целевой функции производится по мере движения в оптимизационном пространстве. В каждом узле пространства значение целевой функции заменяется средним значением целевой функции соседних узлов, окружающих данный узел. Таким образом оригинальное оптимизационное пространство трансформируется в новое пространство, которое используется для поиска оптимального решения. Поиск производится по высотным отметкам трансформированного пространства. Новая высотная отметка каждого узла теперь содержит информацию не только о значении целевой функции самого узла, но и о значениях целевой функции небольшой области, окружающей данный узел. Следовательно, в процессе оптимизации производится не только максимизация целевой функции, но учитывается также робастность потенциального оптимального решения.

Единственным параметром усреднения является диапазон усредняемых узлов. Это могут быть только соседние узлы (одна линия узлов, расположенных вокруг данного узла). В случае двумерной оптимизации, каждый узел соседствует с восемью другими узлами (за исключением узлов, расположенных на границах допустимых значений параметров). Поэтому при усреднении одного ряда узлов, среднее значение рассчитывается по девяти данным – восьми значениям соседних узлов плюс значение центрального узла. При усреднении двух рядов расчет проводится по 25 данным, для трех линий – по 49 и т. д. В общем виде количество усредняемых узлов n определяется следующим образом:

n = (2m+ 1)²,

где m – число рядов узлов, окружающих вычисляемый узел.

Применим данную процедуру к оптимизационной поверхности, полученной ранее в результате свертки трех целевых функций. Исходное оптимизационное пространство (рис. 2.4.1) содержит три оптимальные области, каждая из которых может рассматриваться в качестве кандидата на поиск оптимального решения. На рис. 2.5.1 показаны две трансформации оригинальной поверхности, построенные для m = 1 (усреднение одного ряда соседних ячеек) и m = 2 (усреднение двух рядов). После трансформации, состоящей в усреднении ближайших узлов (левый график рис. 2.5.1), из трех оптимальных областей осталась только одна, расположенная в диапазоне от 28 до 34 дней по параметру «количество дней до экспирации» и 75–125 дней по параметру «период истории для расчета HV». Причина исчезновения двух других областей заключается в том, что их экстремумы оказались менее робастны, чем экстремум сохранившейся области. Трансформация, полученная путем усреднения большего количества узлов (правый график рис. 2.5.1), приводит к аналогичным результатам – исчезновению двух оптимальных областей и сохранению одной области оптимизационного пространства в качестве оптимальной. Таким образом, обе трансформации указывают на предпочтительность выбора одной и той же области. Данная область, помимо наибольшей робастности, имеет еще и наибольшую площадь. Это является дополнительным преимуществом для выбора оптимального решения в пределах именно этой области.

<p>2.5.2. Отношение среднего к стандартному отклонению</p>
Перейти на страницу:

Похожие книги

Строить. Неортодоксальное руководство по созданию вещей, которые стоит делать
Строить. Неортодоксальное руководство по созданию вещей, которые стоит делать

Тони Фаделл возглавлял команды, создавшие iPod, iPhone и Nest Learning Thermostat, и за 30 с лишним лет работы в Кремниевой долине узнал о лидерстве, дизайне, стартапах, Apple, Google, принятии решений, наставничестве, сокрушительных неудачах и невероятных успехах столько, что хватило бы на целую энциклопедию. Тони использует примеры, которые мгновенно захватывают внимание, например, процесс создания самых первых iPod и iPhone. Каждая глава призвана помочь читателю решить проблему, с которой он сталкивается в данный момент - как получить финансирование для своего стартапа, уйти с работы или нет, или просто как вести себя с придурком в соседнем кабинете. Тони прокладывал свой путь к успеху рядом с такими наставниками, как Стив Джобс и Билл Кэмпбелл, иконами Кремниевой долины, которые снова и снова добивались успеха. Но Тони не следует кредо Кремниевой долины, согласно которому для создания чего-то великого необходимо изобретать все с нуля. Его советы нестандартны, потому что они старой закалки. Тони понял, что человеческая природа не меняется. Не нужно изобретать способы руководства и управления - нужно изобретать то, что ты делаешь. Тони Фаделл – американский топ-менеджер. Он создал iPod и iPhone, основал компанию Nest и создал самообучающийся термостат Nest. За свою карьеру Тони стал автором более 300 патентов. Сейчас он возглавляет инвестиционную и консультационную компанию Future Shape, где занимается наставничеством нового поколения стартапов, которые меняют мир.  

Tony Fadell , Тони Фаделл

Финансы / Прочая компьютерная литература / Банковское дело