Читаем Опционы полностью

Двигаясь от простого к более сложному, рассмотрим сначала оптимальное множество Парето, полученное путем применения двух критериев. Из трех целевых функций можно составить три пары критериев, что позволяет получить три варианта оптимального множества. Узлы, попавшие в эти оптимальные множества, группируются на координатной плоскости в пяти областях. На левом графике рис. 2.4.2 эти области обозначены условными порядковыми номерами. Интересно отметить, что ни в одну из пяти областей не попали все три варианта оптимального множества. В третью область попал единственный узел множества, полученного в результате применения целевых функций «прибыль» и «максимальная просадка». Узлы, выбранные этой парой функций, попали также во вторую и пятую области. Узлы, соответствующие паре функций «прибыль» и «процент прибыльных сделок», расположены в первой, второй и четвертой областях. И, наконец, узлы, попавшие в оптимальное множество функций «максимальная просадка» и «процент прибыльных сделок», находятся в областях 1, 4 и 5. Такое распределение оптимальных множеств по областям координатной плоскости свидетельствует о том, что каждая из трех целевых функций вносит свой вклад в поиск оптимального решения. Поэтому в данном случае имеет смысл включить все три функции в систему многокритериальной оптимизации по методу Парето.

Множество оптимальных решений, полученное в результате применения трех критериев показано на правом графике рис. 2.4.2. Узлы, попавшие в оптимальное множество Парето, расположены на координатной плоскости приблизительно в тех же пяти областях, что и в предыдущем примере, когда для оптимизации использовались пары критериев. Наибольшее количество узлов (всего семь) попало во вторую область, в первой области оказалось пять узлов, а в третьей, четвертой и пятой областях – всего по два узла.

Следует отметить, что в предыдущем примере, когда использовалось только по два критерия, оптимальные множества состояли из пяти – семи элементов (в зависимости от пары критериев). Использование трех критериев привело к расширению множества до 18 элементов. Это является общим свойством метода Парето – увеличение количества решений. Поскольку задача параметрической оптимизации требует выбора единственного оптимального узла, то включение в оптимизационную схему каждой дополнительной функции полезности усложняет решение этой задачи. Поэтому, принимая решение о выборе тех или иных целевых функций, следует принимать во внимание не только объем новой информации, вносимой в общую систему каждой дополнительной функцией, но и учитывать сложность выбора единственного оптимального решения из большого количества вариантов.

Расположение оптимальных областей, полученных по методу свертки, достаточно близко к расположению аналогичных областей, полученных по методу Парето (сравни рис. 2.4.1 и 2.4.2). Это означает, что применение обеих методик в данном случае приводит к одному и тому же результату (при этом следует учитывать, что в других случаях результаты могут быть разными, и тогда придется делать выбор между двумя методами).

Основной результат многокритериальной оптимизации, продемонстрированной в этом разделе, состоит в том, что обе методики позволили определить несколько оптимальных областей. Однако ни одна из них не привела к выбору единственного оптимального решения. Следовательно, можно сказать, что задача оптимизации решена не до конца. Необходимо в пределах выбранных областей продолжить поиск единственного оптимального решения. Этому вопросу посвящен следующий раздел.

<p>2.5. Выбор оптимального решения по признаку робастности</p>

Как было показано в предыдущем разделе, многокритериальная оптимизация имеет один существенный недостаток. В большинстве случаев одновременное использование множества целевых функций приводит к нахождению нескольких оптимальных решений. Хотя ни одно из них не является предпочтительным по отношению к другим, нам необходимо выбрать единственный вариант. Такой выбор можно сделать исходя из формы поверхности оптимальных областей, на которых находятся узлы найденных решений.

При выборе оптимального решения на основе многокритериального анализа принимаются в расчет только значения целевых функций каждого узла оптимизационного пространства. Целевые функции соседних узлов полностью игнорируются. Между тем рельеф оптимальной области является важным показателем надежности оптимизации. При прочих равных условиях предпочтителен такой узел оптимизационного пространства, который располагается в центре относительно гладкой высокой области (высота определяется значением целевой функции). Предпочтительно также, чтобы данная область имела широкие покатые склоны. Это означает, что узлы, окружающие узел оптимального решения, должны быть близкими к нему по значениям целевой функции.

Перейти на страницу:

Похожие книги

Строить. Неортодоксальное руководство по созданию вещей, которые стоит делать
Строить. Неортодоксальное руководство по созданию вещей, которые стоит делать

Тони Фаделл возглавлял команды, создавшие iPod, iPhone и Nest Learning Thermostat, и за 30 с лишним лет работы в Кремниевой долине узнал о лидерстве, дизайне, стартапах, Apple, Google, принятии решений, наставничестве, сокрушительных неудачах и невероятных успехах столько, что хватило бы на целую энциклопедию. Тони использует примеры, которые мгновенно захватывают внимание, например, процесс создания самых первых iPod и iPhone. Каждая глава призвана помочь читателю решить проблему, с которой он сталкивается в данный момент - как получить финансирование для своего стартапа, уйти с работы или нет, или просто как вести себя с придурком в соседнем кабинете. Тони прокладывал свой путь к успеху рядом с такими наставниками, как Стив Джобс и Билл Кэмпбелл, иконами Кремниевой долины, которые снова и снова добивались успеха. Но Тони не следует кредо Кремниевой долины, согласно которому для создания чего-то великого необходимо изобретать все с нуля. Его советы нестандартны, потому что они старой закалки. Тони понял, что человеческая природа не меняется. Не нужно изобретать способы руководства и управления - нужно изобретать то, что ты делаешь. Тони Фаделл – американский топ-менеджер. Он создал iPod и iPhone, основал компанию Nest и создал самообучающийся термостат Nest. За свою карьеру Тони стал автором более 300 патентов. Сейчас он возглавляет инвестиционную и консультационную компанию Future Shape, где занимается наставничеством нового поколения стартапов, которые меняют мир.  

Tony Fadell , Тони Фаделл

Финансы / Прочая компьютерная литература / Банковское дело