РАЗЛИЧИЕ МЕЖДУ ПОНЯТИЕМ И ОБЪЕКТОМ
Готлоб Фреге (1848–1925) установил, что любое предложение или высказывание содержит выражение, обозначающее объект, и предикат, обозначающий понятие. Например, в высказывании «Сократ является философом», «Сократ» — это объект, понятие «являться философом» — предикат. Эта точка зрения существенно отличалась от принятой ранее, согласно которой высказывание рассматривалось как два термина, соединенных глаголом «являться». Новый взгляд на отношение «понятие — объект» стало основным для понимания теории множеств и отношения принадлежности элемента ко множеству.
XIX век: некоторые приемы вычисленийПервым коммерчески успешным калькулятором был арифмометр, созданный французом Шарлем Ксавье Тома де Кольмаром (1785–1870). Он успешно продавался не только во Франции, но и в других странах. Конкуренты не дремали, и через несколько лет было создано несколько альтернативных моделей. Наиболее заметными были калькулятор «Арифморель» еще одного француза Тимолеона Мореля (1842), калькулятор с зубчатыми колесами, созданный американцем Фрэнком Болдуином (1872), который независимо от него также был разработан шведом Вильгодтом Однером (1874), жившим в Санкт-Петербурге, а также круговой калькулятор англичанина Джозефа Эдмондсона (1885). Все эти машины использовались даже в первые годы XX века.
Устройство «Арифмореля» — калькулятора, созданного Тимолеоном Морелем.
Начиная с машины Мореля в калькуляторах помимо основных арифметических операций появилась возможность вычисления квадратных корней. Квадратные корни вычислялись на основании следующего разложения в ряд для функции х2:
1 + 3 + 5 + … + (2х — 1) = х2.
Для данного числа n, которое является полным квадратом, квадратный корень из n можно получить последовательным вычитанием из него чисел 1, 3, 5, пока результат вычитания не станет равен нулю. Число выполненных операций вычитания будет равно квадратному корню исходного числа. Допустим, мы хотим вычислить квадратный корень из 100. Нужно последовательно вычесть из него 1, 3, 5, 7, 9, 11, 13, 15, 17, 19. Так как мы вычли из 100 десять чисел, квадратный корень из 100 равен 10.
Если n не является полным квадратом, результатом последнего вычитания будет отрицательное число. Число выполненных операций вычитания будет приближенно равно истинному значению квадратного корня. Чтобы получить искомое значение с точностью до нескольких десятичных знаков, вышеуказанный процесс нужно повторить. При этом для каждого нового десятичного знака исходное число следует умножить на 100 в следующей степени. Например, умножим 2 на 100, чтобы вычислить квадратный корень из 200 и получить один знак после запятой. Имеем:
1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21 + 23 + 25 + 27 =
= 196 < 200 < 225 =
= 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21 + 23 + 25 + 27 + 29.
Заметим, что в верхнем ряду складывается 14 слагаемых, в нижнем — 15.
Следовательно, квадратный корень из 200 находится между 14 и 15, корень из 2 — между 1,4 и 1,5.
В XIX веке были совершены открытия, которые подготовили почву для развития современных информационных технологий. В 1835 году американский физик Джозеф Генри, известный работами по электромагнетизму, изобрел электромеханическое реле.
Еще одно открытие — появление цифровой клавиатуры — предвосхитило основу интерфейса будущих компьютеров. До этого в калькуляторах использовались особые способы ввода множителей, что также требовало особой подготовки в области вычислений. Открытие клавиатуры сделало калькуляторы доступными для всех.
С массовым внедрением промышленных решений автоматические вычисления стали идти параллельным курсом с автоматизацией текстильной промышленности.