Читаем От абака к цифровой революции полностью

Если бы аналитическая машина Бэббиджа была построена, в ней было бы 30 метров в длину, 10 метров в ширину и 4,5 метра в высоту. Сложение выполнялось бы за 3 секунды, умножение — от 2 до 4 минут, не считая времени, затраченного на ввод данных в арифметическое устройство — это заняло бы еще 2,5 секунды.

Чарльз Бэббидж также известен благодаря многим другим открытиям. Он взломал шифр Виженера (вариант шифра Цезаря), разработал приспособление, сбрасывающее посторонние предметы с путей перед локомотивом, а также сформулировал экономический «принцип Бэббиджа». Он также создал современную почтовую систему и был первым, кто указал, что ширина колец на спиле дерева зависит от погодных условий, что позволило изучить климат прошлых лет.

В области философии и богословия, которые он также не обошел стороной, ему не удалось достичь столь значимых успехов. Он был очень верующим человеком и в 1837 году опубликовал «Девятый трактат Бриджуотера» (Ninth Bridgewater Treatise), последовавший за восемью трактатами по богословию, издание которых было оплачено из наследства преподобного Фрэнсиса Генри, графа Бриджуотерского. Бэббидж пытался доказать существование Бога с позиций математики. Он писал, что Бог как высший законодатель создал законы или программы, согласно которым различные виды живых существ появлялись тогда, когда это было необходимо, и не вмешивался в земные дела напрямую. Он также доказывал возможность происхождения чудес с математической точки зрения, использовав методы теории вероятности. Его работы были написаны в то же время, что и труды Чарльза Дарвина (1809–1882).

Логика и Джордж Буль

В 1847 году была опубликована книга «Математический анализ логики» (Mathematical Analysis of Logic) Джорджа Буля, в которой была представлена булева алгебра — попытка применить методы алгебры к логике первого порядка. В настоящее время булева алгебра в общем виде используется при проектировании электрических схем, однако изначально открытия Буля были признаны только узкими специалистами. Лишь в XX веке была понята их важность и возможность применения в информатике.

Большая заслуга в этом принадлежит американскому математику и инженеруКлоду Шеннону (1916–2001), который считается создателем теории информации. Шеннон познакомился с работой Буля на занятиях по философии в Мичиганском университете, и в 1937 году защитил магистерскую диссертацию в Массачусетском технологическом институте (MIT), показав, что булеву алгебру можно использовать для оптимизации электрических цепей. В 1935 году независимо от Шеннона логик Виктор Шестаков (1907–1987) из Московского государственного университета также использовал булеву алгебру в этих же целях.

Булева алгебра оказалась столь полезной в информатике потому, что она описывает идеальный сценарий с точки зрения двоичной логики. В ней используются только нули и единицы, основными операциями являются И, ИЛИ и НЕ, то есть конъюнкция (бинарная операция, обозначаемая ), дизъюнкция (бинарная операция, обозначаемая ) и отрицание (унарная операция, обозначаемая ¬). Эти логические операции определяются с помощью следующих таблиц истинности.

Другие привычные операции, например импликация (операция, схожая с конструкцией «если… то»), выражаются через три основные операции, представленные выше: (х — > у) = ¬ х  y, Кроме того, в виде комбинации этих операций можно представить любую другую логическую функцию. Так называемый закон де Моргана гласит, что существует всего две основные логические операции. Например, это могут быть дизъюнкция и отрицание, с помощью которых также можно выразить операцию конъюнкции.

* * *

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука