Читаем От абака к цифровой революции полностью

КОНРАД ЦУЗЕ (1910–1995)

В университетские годы немецкому инженеру Конраду Цузе приходилось выполнять множество расчетов вручную. Он изнывал от скуки и задумался о создании машины, способной помочь ему в расчетах. По окончании университета он начал работать на авиационном заводе, но вскоре оставил работу и занялся постройкой своей машины в доме родителей. Вскоре он создал первый в мире работающий программируемый компьютер. Он создал машины общего назначения серии Z, машины S1 и S2 для выполнения расчетов, связанных с бомбардировками, а также машину L1 для вычисления значений логических функций. Он также разработал язык программирования Планкалкюль, который не вышел за рамки теории. Цузе основал несколько компаний для постройки своих машин. Важнейшей из них стала Zuse KG, силами которой были частично изготовлены машины серии Z. Zuse KG считается первой в истории компьютерной компанией.

* * *

В 1947 году в разрушенной послевоенной Германии Цузе возвращается к работе над своими машинами. Он наладил контакты с IBM, а позднее с Remington-Rand, с которой заключил соглашение. Он создал машины на электронных лампах, в частности Z22, и на транзисторах, в частности Z23 и Z3. Позднее ученый разработал Z64 — графопостроитель, управляемый машиной.

Единственным образцом первых машин Цузе, дошедшим до наших дней, стала Z4 — первая коммерческая вычислительная машина. Она использовалась во множестве учреждений вплоть до 1959 года. Один из экземпляров Z4 вместе с воссозданной версией Z3 сейчас хранится в Немецком музее Мюнхена. К сожалению, все остальные машины были разрушены во время бомбардировок Берлина.

Машина Тьюринга и «Колосс»

Алан Тьюринг (1912–1954) в детстве хотел стать врачом, но в итоге стал математиком, философом и специалистом по криптографии, а также создателем современной информатики. Он известен в первую очередь благодаря своим теоретическим работам, однако также сыграл очень важную роль в практической реализации одного из первых компьютеров. Тьюринг сделал свое первое открытие в теоретической математике в 1936 году, решив проблему разрешения (Entscheidungsproblem), сформулированную Давидом Гильбертом. Чтобы справиться с этой задачей, Тьюринг создал модель вычислений, в которой дал формальное определение алгоритму (или программе). Эта модель вошла в историю под названием машина Тьюринга.

В 1928 году влиятельный немецкий математик Давид Гильберт (1862–1943), который в 1900 году предложил знаменитый список задач, начал работу над проблемой разрешения, которую впервые сформулировал Лейбниц. Гильберт считал, что нерешаемых задач не существует. Он предложил гипотезу, согласно которой всегда можно составить программу (алгоритм), которая сможет дать однозначный верный ответ на любой заданный вопрос. Независимо друг от друга Алан Тьюринг и американский математик Алонзо Чёрч доказали, что Гильберт ошибался: нерешаемые задачи существуют, а предложенную Гильбертом программу (алгоритм) составить невозможно. Следовательно, математика не является разрешимой, то есть не существует метода, который позволил бы определить истинность или ложность произвольного математического утверждения.

Математик Алан Тьюринг, считающийся одним из создателей компьютеров.

Чёрч и Тьюринг в своих доказательствах использовали созданные ими модели: первый применял лямбда-исчисление, второй — разработанную им машину. Оба дали формальное определение алгоритму и использовали в своих доказательствах арифметические задачи. Существование арифметических задач, для которых решения отсутствуют, означало бы, что решить любую произвольную задачу также невозможно. Однако работа Тьюринга была намного более доступной и понятной.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука